Article

Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study.

Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230, USA.
Proteins Structure Function and Bioinformatics (Impact Factor: 3.34). 10/2005; 60(4):598-605. DOI: 10.1002/prot.20547
Source: PubMed

ABSTRACT Hypocrea jecorina (formerly Trichoderma reesei) Cel7A has a catalytic domain (CD) and a cellulose-binding domain (CBD) separated by a highly glycosylated linker. Very little is known of how the 2 domains interact to degrade crystalline cellulose. Based on the interaction energies and forces on cello-oligosaccharides computationally docked to the CD and CBD, we propose a molecular machine model, where the CBD wedges itself under a free chain end on the crystalline cellulose surface and feeds it to the CD active site tunnel. Enzyme-substrate interactions produce the forces required to pull cellulose chains from the surface and also to help the enzyme move on the cellulose chain for processive hydrolysis. The energy to generate these forces is ultimately derived from the chemical energy of glycosidic bond breakage.

0 Bookmarks
 · 
43 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a green alternative for the production of transportation fuels, the enzymatic hydrolysis of lignocellulose and subsequent fermentation to ethanol are being intensively researched. To be economically feasible, the hydrolysis of lignocellulose must be conducted at a high concentration of solids, which results in high concentrations of hydrolysis end-products, cellobiose and glucose, making the relief of product inhibition of cellulases a major challenge in the process. However, little quantitative information on the product inhibition of individual cellulases acting on cellulose substrates is available because it is experimentally difficult to assess the hydrolysis of the heterogeneous polymeric substrate in the high background of added products. The cellobiose and glucose inhibition of thermostable cellulases from Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum acting on uniformly 14C-labeled bacterial cellulose and its derivatives, 14C-bacterial microcrystalline cellulose and 14C-amorphous cellulose, was studied. Cellulases from Trichoderma reesei were used for comparison. The enzymes most sensitive to cellobiose inhibition were glycoside hydrolase (GH) family 7 cellobiohydrolases (CBHs), followed by family 6 CBHs and endoglucanases (EGs). The strength of glucose inhibition followed the same order. The product inhibition of all enzymes was relieved at higher temperatures. The inhibition strength measured for GH7 CBHs with low molecular-weight model substrates did not correlate with that measured with 14C-cellulose substrates. GH7 CBHs are the primary targets for product inhibition of the synergistic hydrolysis of cellulose. The inhibition must be studied on cellulose substrates instead of on low molecular-weight model substrates when selecting enzymes for lignocellulose hydrolysis. The advantages of using higher temperatures are an increase in the catalytic efficiency of enzymes and the relief of product inhibition.
    Biotechnology for Biofuels 07/2013; 6(1):104. · 5.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The glycoside hydrolase family 7 cellobiohydrolase Cel7A from Trichoderma reesei is one of the best studied cellulases with the ability to degrade highly crystalline cellulose. The catalytic domain and the cellulose-binding domain (CBD) are both necessary for full activity on crystalline substrates. Our previous high-speed atomic force microscopy studies showed that mutation of Trp-40 at the entrance of the catalytic tunnel drastically decreases the ability to degrade crystalline cellulose. Here, we examined the activities of the WT enzyme and mutant W40A (with and without the CBD) for various substrates. Evaluation and comparison of the specific activities of the enzymes (WT, W40A, and the corresponding catalytic subunits (WTcat and W40Acat)) adsorbed on crystalline cellulose indicated that Trp-40 is involved in recruiting individual substrate chains into the active site tunnel to initiate processive hydrolysis. This was supported by molecular dynamics simulation study, i.e. the reducing end glucose unit was effectively loaded into the active site of WTcat, but not into that of W40Acat, when the simulation was started from subsite −7. However, when similar simulations were carried out starting from subsite −5, both enzymes held the substrate for 50 ns, indicating that the major difference between WTcat and W40Acat is the length of the free chain end of the substrate required to allow initiation of processive movements; this also reflects the difference between crystalline and amorphous celluloses. The CBD is important for enhancing the enzyme population on crystalline substrate, but it also decreases the specific activity of the adsorbed enzyme, possibly by attaching the enzyme to non-optimal places on the cellulose surface and/or hindering processive hydrolysis.
    Journal of Biological Chemistry 03/2013; 288:13503-13510. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect.
    FEBS letters 03/2014; · 3.54 Impact Factor