Article

Cytokines and sodium induce protein kinase A-dependent cell-surface Na,K-ATPase recruitment via dissociation of NF-{kappa}B/I{kappa}B/protein kinase A catalytic subunit complex in collecting duct principal Cells

Policlinico S.Orsola-Malpighi, Bolonia, Emilia-Romagna, Italy
Journal of the American Society of Nephrology (Impact Factor: 9.47). 10/2005; 16(9):2576-85. DOI: 10.1681/ASN.2005040448
Source: PubMed

ABSTRACT Collecting duct (CD) principal cells are exposed to large physiologic variations of apical Na+ influx as a result of variations of Na(+) intake and extrarenal losses. It was shown previously that increasing intracellular [Na+] induces recruitment of Na,K-ATPase to the cell surface in a protein kinase A (PKA)-dependent manner in both native and cultured renal CD principal cells. As described previously in response to cytokines in nonrenal cells, PKA activation in response to increased intracellular [Na+] was independent of cAMP and required proteasomal activity. With the use of cultured mpkCCD(cL4) cells as a model of CD principal cells, whether cytokines and increased intracellular [Na+] share a common signaling pathway leading to cell-surface Na,K-ATPase recruitment was investigated. Results showed that two potent inducers of NF-kappaB, LPS and TNF-alpha, enhance Na+ transport and induce cell-surface Na,K-ATPase recruitment in mpkCCD(cL4) cells via cAMP-independent PKA activation. In addition, increased intracellular [Na+] after selective plasma membrane permeabilization by a low concentration of the Na+ ionophore amphotericin B (1 microg/ml) induced dissociation of the PKA catalytic subunit from p65-NF-kappaB and IkappaBalpha. Moreover, inhibitors of NF-kappaB/IkappaB dissociation prevented both Na+-dependent stimulation of PKA activity and cell-surface Na,K-ATPase recruitment. Altogether, these results revealed the presence of a novel Na+-dependent intracellular signaling pathway leading to Na,K-ATPase cell-surface recruitment via dissociation of the PKA catalytic subunit from a macromolecular complex that contains NF-kappaB and IkappaBalpha in CD epithelial cells.

Download full-text

Full-text

Available from: Manlio Vinciguerra, Jul 19, 2015
0 Followers
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fine control of NaCl absorption regulated by hormones takes place in the distal nephron of the kidney. In collecting duct principal cells, the epithelial sodium channel (ENaC) mediates the apical entry of Na(+), which is extruded by the basolateral Na(+),K(+)-ATPase. Simian virus 40-transformed and "transimmortalized" collecting duct cell lines, derived from transgenic mice carrying a constitutive, conditionally, or tissue-specific promoter-regulated large T antigen, have been proven to be valuable tools for studying the mechanisms controlling the cell surface expression and trafficking of ENaC and Na(+),K(+)-ATPase. These cell lines have made it possible to identify sets of aldosterone- and vasopressin-stimulated proteins, and have provided new insights into the concerted mechanism of action of serum- and glucocorticoid-inducible kinase 1 (Sgk1), ubiquitin ligase Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), and 14-3-3 regulatory proteins in modulating ENaC-mediated Na(+) currents. Epidermal growth factor and induced leucine zipper protein have also been shown to repress and stimulate ENaC-dependent Na(+) absorption, respectively, by activating or repressing the mitogen-activated protein kinase externally regulated kinase(1/2). Overall, these findings have provided evidence suggesting that multiple pathways are involved in regulating NaCl absorption in the distal nephron.
    Pflügers Archiv - European Journal of Physiology 12/2006; 453(2):133-46. DOI:10.1007/s00424-006-0123-0 · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ascending urinary tract infection (UTI) and pyelonephritis caused by uropathogenic Escherichia coli (UPEC) are very common infections that can cause severe kidney damage. Collecting duct cells, the site of hormonally regulated ion transport and water absorption controlled by vasopressin, are the preferential intrarenal site of bacterial adhesion and initiation of inflammatory response. We investigated the effect of the potent V2 receptor (V2R) agonist deamino-8-D-arginine vasopressin (dDAVP) on the activation of the innate immune response using established and primary cultured collecting duct cells and an experimental model of ascending UTI. dDAVP inhibited Toll-like receptor 4-mediated nuclear factor kappaB activation and chemokine secretion in a V2R-specific manner. The dDAVP-mediated suppression involved activation of protein phosphatase 2A and required an intact cystic fibrosis transmembrane conductance regulator Cl- channel. In vivo infusion of dDAVP induced a marked fall in proinflammatory mediators and neutrophil recruitment, and a dramatic rise in the renal bacterial burden in mice inoculated with UPECs. Conversely, administration of the V2R antagonist SR121463B to UPEC-infected mice stimulated both the local innate response and the antibacterial host defense. These findings evidenced a novel hormonal regulation of innate immune cellular activation and demonstrate that dDAVP is a potent modulator of microbial-induced inflammation in the kidney.
    Journal of Experimental Medicine 12/2007; 204(12):2837-52. DOI:10.1084/jem.20071032 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sodium retention and edema are common features of nephrotic syndrome that are classically attributed to hypovolemia and activation of the renin-angiotensin-aldosterone system. However, numbers of clinical and experimental findings argue against this underfill theory. In this review we analyze data from the literature in both nephrotic patients and experimental models of nephrotic syndrome that converge to demonstrate that sodium retention is not related to the renin-angiotensin-aldosterone status and that fluid leakage from capillary to the interstitium does not result from an imbalance of Starling forces, but from changes of the intrinsic properties of the capillary endothelial filtration barrier. We also discuss how most recent findings on the cellular and molecular mechanisms of sodium retention has allowed the development of an efficient treatment of edema in nephrotic patients.
    Pediatric Nephrology 01/2008; 22(12):1983-90. DOI:10.1007/s00467-007-0521-3 · 2.88 Impact Factor
Show more