CD93 is rapidly shed from the surface of human myeloid cells and the soluble form is detected in human plasma.

Department of Molecular Biology and Biochemistry, Center for Immunology, University of California-Irvine, 2419 McGaugh Hall, Irvine, CA 92697, USA.
The Journal of Immunology (Impact Factor: 5.36). 08/2005; 175(2):1239-47. DOI: 10.4049/jimmunol.175.2.1239
Source: PubMed

ABSTRACT CD93 is a highly glycosylated transmembrane protein expressed on monocytes, neutrophils, endothelial cells, and stem cells. Antibodies directed at CD93 modulate phagocytosis, and CD93-deficient mice are defective in the clearance of apoptotic cells from the inflamed peritoneum. In this study we observe that CD93, expressed on human monocytes and neutrophils, is susceptible to phorbol dibutyrate-induced protein ectodomain shedding in a time- and dose-dependent manner. The soluble fragment found in culture supernatant retains the N-terminal carbohydrate recognition domain and the epidermal growth factor repeats after ectodomain cleavage. Importantly, a soluble form of the CD93 ectodomain was detected in human plasma, demonstrating that shedding is a physiologically relevant process. Inhibition of metalloproteinases with 1,10-phenanthroline inhibited shedding, but shedding was independent of TNF-alpha-converting enzyme (a disintegrin and metalloproteinase 17). Phorbol dibutyrate-induced CD93 shedding on monocytes was accompanied by decreased surface expression, whereas neutrophils displayed an increase in surface expression, suggesting that CD93 shed from the neutrophil surface was rapidly replaced by CD93 from intracellular stores. Cross-linking CD93 on human monocytes with immobilized anti-CD93 mAbs triggered shedding, as demonstrated by a decrease in cell-associated, full-length CD93 concomitant with an increase in CD93 intracellular domain-containing cleavage products. In addition, the inflammatory mediators, TNF-alpha and LPS, stimulated ectodomain cleavage of CD93 from monocytes. These data demonstrate that CD93 is susceptible to ectodomain shedding, identify multiple stimuli that trigger shedding, and identify both a soluble form of CD93 in human plasma and intracellular domain containing cleavage products within cells that may contribute to the physiologic role of CD93.

Download full-text


Available from: Andrea J Tenner, Dec 26, 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor endothelial markers (TEMs) that are highly expressed in human tumor vasculature compared with vasculature in normal tissue hold clear therapeutic potential. We report that the C-type lectin CLEC14A is a novel TEM. Immunohistochemical and immunofluorescence staining of tissue arrays has shown that CLEC14A is strongly expressed in tumor vasculature when compared with vessels in normal tissue. CLEC14A overexpression in tumor vessels was seen in a wide range of solid tumor types. Functional studies showed that CLEC14A induces filopodia and facilitates endothelial migration, tube formation and vascular development in zebrafish that is, CLEC14A regulates pro-angiogenic phenotypes. CLEC14A antisera inhibited cell migration and tube formation, suggesting that anti-CLEC14A antibodies may have anti-angiogenic activity. Finally, in endothelial cultures, expression of CLEC14A increased at low shear stress, and we hypothesize that low shear stress due to poor blood flow in the disorganized tumor vasculature induces expression of CLEC14A on tumor vessels and pro-angiogenic phenotypes.
    Oncogene 06/2011; 31(3):293-305. DOI:10.1038/onc.2011.233 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we characterize a polymorphism in the CD93 molecule, originally identified as the receptor for the C1q complement component (i.e., C1qRp, or AA4.1) in non-obese diabetic (NOD) mice. This allele carries a coding polymorphism in the first epidermal growth factor-like domain of CD93, which results in an amino acid substitution from Asn-->His at position 264. This polymorphism does not appear to influence protein translation or ecto-domain cleavage, as CD93 is detectable in bone-marrow-derived macrophage and B-cell precursor lysates and in soluble form in the serum. The NOD CD93 isoform causes a phenotypic aberrancy in the early B-cell developmental stages (i.e., pro-, pre-, immature, and transitional), likely related to a conformational variation. Interestingly, the NZB/W F1 strain, which serves as a murine model of Lupus, also expresses an identical CD93 sequence polymorphism. Cd93 is located within the NOD Idd13 locus and is also tightly linked to the NZB/W F1 Wbw1 and Nkt2 disease susceptibility loci, which are thought to regulate natural killer T (NKT) cell homeostasis. Consistent with this genetic linkage, we found B6 CD93(-/-) and B6.NOD(Idd13) mice to be susceptible to a profound CD4(+) NKT cell deficient state. These data suggest that Cd93 may be an autoimmune susceptibility gene residing within the Idd13 locus, which plays a role in regulating absolute numbers of CD4(+) NKT cells.
    Immunogenetics 04/2010; 62(6):397-407. DOI:10.1007/s00251-010-0442-3 · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.
    Microbiology and Immunology 02/2006; 50(2):93-103. DOI:10.1111/j.1348-0421.2006.tb03774.x · 1.31 Impact Factor