Article

Temporal and spatial expression of liver receptor homologue-1 (LRH-1) during embryogenesis suggests a potential role in gonadal development.

Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
Developmental Dynamics (Impact Factor: 2.67). 10/2005; 234(1):159-68. DOI: 10.1002/dvdy.20490
Source: PubMed

ABSTRACT Liver receptor homologue-1 (LRH-1), an orphan member of the nuclear receptor family highly expressed in adult mouse ovary, is closely related to steroidogenic factor 1 (SF-1), known to be important in gonadal formation. To analyze the potential role of LRH-1 in gonadal differentiation, we compared LRH-1 and SF-1 expression during mouse embryonic and postnatal development. LRH-1 expression was first detected in the urogenital ridge before sexual determination, in primordial germ cells and surrounding somatic cells; expression persisted after differentiation into testes and ovaries. Of interest, LRH-1 expression declined in the developing ovary and testis at embryonic day 15.5 but increased again just after birth in the ovary in granulosa cells and transiently in oocytes of developing follicles. By comparing and contrasting LRH and SF-1 expression with the two tissue-specific steroidogenic markers, cytochromes P450 aromatase and P450 17alpha-hydroxylase/17,20 lyase, we provide evidence for a potential role for LRH-1 in gonadal development, the initiation of folliculogenesis and regulation of estrogen biosynthesis within the ovary.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
    Molecular and Cellular Endocrinology 07/2012; · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver receptor homolog-1 (LRH-1) is a conserved member of NR5A subfamily in vertebrates, and a potential regulator of estrogen synthesis in the ovarian granulosa cells. A Lrh-1 homologue was obtained from the orange-spotted grouper Epinephelus coioides, which contains the conserved structural features of NR5A and is phylogenetically closely related to NR5A2. The expression of the orange-spotted grouper Lrh-1 is tissues-specific, with relatively higher levels in the liver and ovary. The immunoreactive signals for Lrh-1 and Cyp19a1a were present in the ovarian follicular cells and germ cells. In the ovarian follicular cells, Lrh-1 was present both in the nucleus and cytoplasm, and co-localized with Cyp19a1a, with expression levels of both increased during vitellogenesis whereas only Cyp19a1a dramatically decreased towards maturation when Lrh-1 was localized almost exclusively to the cytoplasm of the follicular cells. The orange-spotted grouper Lrh-1 could up-regulate cyp19a1a transcription in vitro via the two conserved Ftz-f1 sites in cyp19a1a promoter. ChIP analysis showed that the orange-spotted grouper Lrh-1 could bind cyp19a1a promoter in vivo with a higher abundance in the vitellogenic ovary, whereas the binding was dramatically decreased in the mature ovary. Taken together, results of present study demonstrate that Lrh-1 plays an important role in up-regulating cyp19a1a gene in the ovarian follicular cells during vitellogenesis, and the sequestration of Lrh-1 to the cytoplasm may down-regulate cyp19a1a expression in the mature ovary. This mechanism modifying transcriptional roles of the orange-spotted grouper Lrh-1 may shed new light on the regulation of Cyp19a1 expression in other vertebrates as well.
    Biology of Reproduction 06/2014; · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutritional status is known to control female reproductive physiology. Many reproductive pathologies such as anorexia nervosa, dystocia and preeclampsia, have been linked to body mass index and to metabolic syndrome. Lipid metabolism has also been associated with ovarian, uterine and placental functions. Among the regulators of lipid homeostasis, the Liver X Receptors (LXRs) and the Liver Receptor Homolog-1 (LRH-1), two members of the nuclear receptor superfamily, play a central role. LXRs are sensitive to intracellular cholesterol concentration and decrease plasma cholesterol, allowing to considering them as "cholesterol sensors". LRH-1 shares many target-genes with LXRs and has been considered for a long time as a real orphan nuclear receptor, but recent findings showed that phospholipids are ligands for this nuclear receptor. Acting in concert, LXRs and LRH-1 could thus be sensitive to slight modifications in cellular lipid balance, tightly maintaining their cellular concentrations. These last years, the use of transgenic mice clarified the roles of these nuclear receptors in many physiological functions. This review will be focused on the roles of LXRs and LRH-1 on female reproduction. Their contribution to ovarian endocrine and exocrine functions, as well as uterine and placental physiology will be discussed. The future challenge will thus be to target these nuclear receptors to prevent lipid-associated reproductive diseases in women.
    Molecular and Cellular Endocrinology 06/2012; · 4.24 Impact Factor

Preview

Download
0 Downloads