Article

Temporal and spatial expression of liver receptor homologue-1 (LRH-1) during embryogenesis suggests a potential role in gonadal development

Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
Developmental Dynamics (Impact Factor: 2.67). 09/2005; 234(1):159-68. DOI: 10.1002/dvdy.20490
Source: PubMed

ABSTRACT Liver receptor homologue-1 (LRH-1), an orphan member of the nuclear receptor family highly expressed in adult mouse ovary, is closely related to steroidogenic factor 1 (SF-1), known to be important in gonadal formation. To analyze the potential role of LRH-1 in gonadal differentiation, we compared LRH-1 and SF-1 expression during mouse embryonic and postnatal development. LRH-1 expression was first detected in the urogenital ridge before sexual determination, in primordial germ cells and surrounding somatic cells; expression persisted after differentiation into testes and ovaries. Of interest, LRH-1 expression declined in the developing ovary and testis at embryonic day 15.5 but increased again just after birth in the ovary in granulosa cells and transiently in oocytes of developing follicles. By comparing and contrasting LRH and SF-1 expression with the two tissue-specific steroidogenic markers, cytochromes P450 aromatase and P450 17alpha-hydroxylase/17,20 lyase, we provide evidence for a potential role for LRH-1 in gonadal development, the initiation of folliculogenesis and regulation of estrogen biosynthesis within the ovary.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
    Molecular and Cellular Endocrinology 07/2012; DOI:10.1016/j.mce.2012.06.011 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver receptor homolog-1 (LRH-1) is a member of the nuclear receptor 5A (NR5A) subfamily. It is expressed in granulosa cells of the ovary and is involved in steroidogenesis and ovulation. To reveal the transcriptional regulatory mechanism of LRH-1, we determined its transcription start site in the ovary using KGN cells, a human granulosa cell tumor cell line. 5'-rapid amplification of cDNA ends PCR revealed that human ovarian LRH-1 was transcribed from a novel transcription start site, termed exon 2o, located 41 bp upstream of the reported exon 2. The novel LRH-1 isoform was expressed in the human ovary but not the liver. Promoter analysis and an EMSA indicated that a steroidogenic factor-1 (SF-1) binding site and a GC box upstream of exon 2o were required for promoter activity, and that SF-1 and specificity protein (Sp)-1/3 bind to the respective regions in ovarian granulosa cells. In KGN cells, transfection of SF-1 increased ovarian LRH-1 promoter activity and SF-1-dependent reporter activity was further enhanced when peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was cotransfected. In Drosophila SL2 cells, Sp1 was more effective than Sp3 in enhancing promoter activity, and co-transfection of the NR5A-family synergistically increased activity. Infection with adenoviruses expressing SF-1 or PGC-1α induced LRH-1 expression in KGN cells. These results indicate that the expression of human LRH-1 is regulated in a tissue-specific manner, and that the novel promoter region is controlled by the Sp-family, NR5A-family and PGC-1α in ovarian granulosa cells in a coordinated fashion.
    Endocrinology 03/2013; 154(4). DOI:10.1210/en.2012-2008 · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver receptor homolog-1 (LRH-1) is a conserved member of NR5A subfamily in vertebrates, and a potential regulator of estrogen synthesis in the ovarian granulosa cells. A Lrh-1 homologue was obtained from the orange-spotted grouper Epinephelus coioides, which contains the conserved structural features of NR5A and is phylogenetically closely related to NR5A2. The expression of the orange-spotted grouper Lrh-1 is tissues-specific, with relatively higher levels in the liver and ovary. The immunoreactive signals for Lrh-1 and Cyp19a1a were present in the ovarian follicular cells and germ cells. In the ovarian follicular cells, Lrh-1 was present both in the nucleus and cytoplasm, and co-localized with Cyp19a1a, with expression levels of both increased during vitellogenesis whereas only Cyp19a1a dramatically decreased towards maturation when Lrh-1 was localized almost exclusively to the cytoplasm of the follicular cells. The orange-spotted grouper Lrh-1 could up-regulate cyp19a1a transcription in vitro via the two conserved Ftz-f1 sites in cyp19a1a promoter. ChIP analysis showed that the orange-spotted grouper Lrh-1 could bind cyp19a1a promoter in vivo with a higher abundance in the vitellogenic ovary, whereas the binding was dramatically decreased in the mature ovary. Taken together, results of present study demonstrate that Lrh-1 plays an important role in up-regulating cyp19a1a gene in the ovarian follicular cells during vitellogenesis, and the sequestration of Lrh-1 to the cytoplasm may down-regulate cyp19a1a expression in the mature ovary. This mechanism modifying transcriptional roles of the orange-spotted grouper Lrh-1 may shed new light on the regulation of Cyp19a1 expression in other vertebrates as well.
    Biology of Reproduction 06/2014; 91(2). DOI:10.1095/biolreprod.114.117952 · 3.45 Impact Factor

Preview

Download
0 Downloads