PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP.

Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
Oncogene (Impact Factor: 8.56). 10/2005; 24(43):6465-81. DOI: 10.1038/sj.onc.1208802
Source: PubMed

ABSTRACT Protein kinase B (PKB/Akt) has been shown to play a role in protection from apoptosis, cell proliferation and cell growth. It is also involved in mediating the effects of insulin, such as lipogenesis, glucose uptake and conversion of glucose into fatty acids and cholesterol. Sterol-regulatory element binding proteins (SREBPs) are the major transcription factors that regulate genes involved in fatty acid and cholesterol synthesis. It has been postulated that constitutive activation of the phosphatidylinositol 3 kinase/Akt pathway may be involved in fatty acid and cholesterol accumulation that has been described in several tumour types. In this study, we have analysed changes in gene expression in response to Akt activation using DNA microarrays. We identified several enzymes involved in fatty acid and cholesterol synthesis as targets for Akt-regulated transcription. Expression of these enzymes has previously been shown to be regulated by the SREBP family of transcription factors. Activation of Akt induces synthesis of full-length SREBP-1 and SREBP-2 proteins as well as expression of fatty acid synthase (FAS), the key regulatory enzyme in lipid biosynthesis. We also show that Akt leads to the accumulation of nuclear SREBP-1 but not SREBP-2, and that activation of SREBP is required for Akt-induced activation of the FAS promoter. Finally, activation of Akt induces an increase in the concentration of cellular fatty acids as well as phosphoglycerides, the components of cellular membranes. Our data indicate that activation of SREBP by Akt leads to the induction of key enzymes of the cholesterol and fatty acid biosynthesis pathways, and thus membrane lipid biosynthesis.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty acid synthase, acetyl-Co-A carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits upregulation of ATP citrate lyase and fatty acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidyl choline, which is blocked by inhibitors of fatty acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]-choline into phosphatidyl choline and observed similar effects. Lipogenesis is significantly affected by pre-treatment of prostate cancer cells with fatostatin A, which blocks SREBP proteolytic cleavage and activation. The present study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 02/2015; 290(15). DOI:10.1074/jbc.M114.617837 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glomerular matrix accumulation is a hallmark of diabetic nephropathy. Recent studies showed that overexpression of the transcription factor SREBP-1 induces glomerulosclerosis. TGFβ1 is a key profibrotic mediator of glomerulosclerosis, but whether SREBP-1 regulates its effects is unknown. In kidney mesangial cells and in vivo, TGFβ1 activates SREBP-1. This requires SCAP, S1P, and PI3K/Akt signaling, but is independent of Smad3. Activation of the TGFβ1-responsive reporter plasmid p3TP-lux requires SREBP-1a, but not SREBP-1c, binding to an E-box adjacent to a Smad-binding element. SREBP-1a overexpression alone activates p3TP-lux. Smad3 is required for SREBP-1a transcriptional activation and TGFβ1 induces association between the two transcription factors. SREBP-1a K333 acetylation by the acetyltransferase CBP is required for Smad3 association and SREBP-1 transcriptional activity, and is also required for Smad3 transcriptional activity. Thus, both Smad3 and SREBP-1a activation cooperatively regulate TGFβ transcriptional responses. SREBP-1 inhibition provides a novel therapeutic strategy for diabetic kidney disease.
    Journal of Molecular Cell Biology 10/2014; 6(6). DOI:10.1093/jmcb/mju041 · 8.43 Impact Factor
  • Source

Full-text (2 Sources)

Available from
May 21, 2014