RFP represses transcriptional activation by bHLH transcription factors

Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 2XY, UK.
Oncogene (Impact Factor: 8.56). 11/2005; 24(45):6729-36. DOI: 10.1038/sj.onc.1208828
Source: PubMed

ABSTRACT Basic helix-loop-helix (bHLH) transcription factors play a pivotal role in the regulation of tumorigenesis, and also in a wide range of other developmental processes in diverse species from yeast to humans. Here we demonstrate for the first time that Ret finger protein (RFP), a member of the TRIM family of proteins initially identified as a recombined transforming gene from a human lymphoma, is a novel interaction partner for four different bHLH proteins (SCL, E47, MyoD and mASH-1), but does not interact with GATA-1 or PU.1. Interaction with SCL required the B-box and first coiled-coil region of RFP together with the bHLH domain of SCL. RFP was able to repress transcriptional activation by E47, MyoD and mASH-1, but not by members of several other transcription factor families. Transcriptional repression by RFP was trichostatin A sensitive and did not involve an Id-like mechanism or ubiquitination with subsequent degradation of bHLH proteins. Instead, our results suggest that bHLH transcription factors are regulated by a previously undescribed interaction with RFP, which functions to recruit HDAC and/or Polycomb proteins and thus repress target genes of bHLH proteins. These results reveal an unexpected link between the bHLH and TRIM protein families.

Download full-text


Available from: Ekaterini Kotsopoulou, Jul 09, 2015
  • Source
    • "In somatic cells, SUMO-I modification of RFP induces its relocalization into nuclear bodies reminiscent of the PML bodies and strengthens its transcriptional repressor activity [7]. RFP has also been proposed to repress transcriptional activity of specific proteins such as Retinoblastoma protein or bHLH transcription factors [17] [18]. However, the role of RFP in meiotic cells remains unclear. "
    [Show abstract] [Hide abstract]
    ABSTRACT: During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.
    International Journal of Cell Biology 01/2009; 2009:524858. DOI:10.1155/2009/524858
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Scaffold attachment factor B1 (SAFB1) is an estrogen receptor (ESR1) repressor that has been proposed to inhibit breast tumorigenesis. To obtain insight into the functions of SAFB1 we utilized a yeast two-hybrid screen and identified the Ret finger protein (RFP) as interacting with the SAFB1 C-terminus. RFP is a member of the trimotif (TRIM) family of proteins, which we found widely expressed in a series of breast cancer cell lines. We confirmed the interaction between SAFB1 and RFP through in vitro (GST-pull-down) and in vivo (coimmunoprecipitations) assays. We hypothesized that SAFB1 functions as a scaffolding protein to recruit proteins such as RFP into proximity with ESR1. Consequently, we asked whether RFP would modulate ESR1 activity and we discovered that RFP was important for the ESR1-dependent expression of cyclin D1 (CCND1) and the progesterone receptor (PR), but not IRS1 or MYC. Although RFP did not interact with ESR1 directly, it does coimmunoprecipitate with ESR1, demonstrating that RFP is found within the same protein complex. Chromatin immunoprecipitation assays (ChIP) located RFP to the TFF1 promoter, a known ESR1-regulated gene. Taken together, our study provides further evidence that coactivation and corepression are integrally linked processes and that RFP is a component of an ESR1 regulatory complex.
    Biochemical and Biophysical Research Communications 11/2006; 349(2):540-8. DOI:10.1016/j.bbrc.2006.08.063 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite tremendous progress made toward the identification of the molecular circuitry that governs cell fate in embryonic stem cells, genes controlling this process in the adult hematopoietic stem cell have proven to be more difficult to unmask. We now report the results of a novel gain-of-function screening approach, which identified a series of 18 nuclear factors that affect hematopoietic stem cell activity. Overexpression of ten of these factors resulted in an increased repopulating activity compared to unmanipulated cells. Interestingly, at least four of the 18 factors, Fos, Tcfec, Hmgb1, and Sfpi1, show non-cell-autonomous functions. The utilization of this screening method together with the creation of a database enriched for potential determinants of hematopoietic stem cell self-renewal will serve as a resource to uncover regulatory networks in these cells.
    Cell 05/2009; 137(2):369-79. DOI:10.1016/j.cell.2009.03.026 · 33.12 Impact Factor
Show more