The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006

Division of Medical Oncology, Mayo Clinic, 200 First Street. SW, Rochester, MN 55905, USA.
Oncogene (Impact Factor: 8.56). 11/2005; 24(46):6861-9. DOI: 10.1038/sj.onc.1208841
Source: PubMed

ABSTRACT BAY 43-9006, a multikinase inhibitor that targets Raf, prevents tumor cell proliferation in vitro and inhibits diverse human tumor xenografts in vivo. The mechanism of action of BAY 43-9006 remains incompletely defined. In the present study, the effects of BAY 43-9006 on the antiapoptotic Bcl-2 family member Mcl-1 were examined. Treatment of A549 lung cancer cells with BAY 43-9006 diminished Mcl-1 levels in a time- and dose-dependent manner without affecting other Bcl-2 family members. Similar BAY 43-9006-induced Mcl-1 downregulation was observed in ACHN (renal cell), HT-29 (colon), MDA-MB-231 (breast), KMCH (cholangiocarcinoma), Jurkat (acute T-cell leukemia), K562 (chronic myelogenous leukemia) and MEC-2 (chronic lymphocytic leukemia) cells. Mcl-1 mRNA levels did not change in BAY 43-9006-treated cells. Instead, BAY 43-9006 enhanced proteasome-mediated Mcl-1 degradation. This Mcl-1 downregulation was followed by mitochondrial cytochrome c release and caspase activation as well as enhanced sensitivity to other proapoptotic agents. The caspase inhibitor Boc-D-fmk inhibited BAY 43-9006-induced caspase activation but not cytochrome c release. In contrast, Mcl-1 overexpression inhibited cytochrome c release and other features of BAY 43-9006-induced apoptosis. Conversely, Mcl-1 downregulation by short hairpin RNA enhanced BAY 43-9006-induced apoptosis. Collectively, these findings demonstrate that drug-induced Mcl-1 downregulation contributes to the proapoptotic effects of BAY 43-9006.

Download full-text


Available from: Xuewei Meng, May 13, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antihormonal and chemotherapy are standard treatments for nonorgan-confined prostate cancer. The effectivity of these therapies is limited and the development of alternative approaches is necessary. In the present study, we report on the use of the multikinase inhibitor sorafenib in a panel of prostate cancer cell lines and their derivatives which mimic endocrine and chemotherapy resistance. (3)H-thymidine incorporation assays revealed that sorafenib causes a dose-dependent inhibition of proliferation of all cell lines associated with downregulation of cyclin-dependent kinase 2 and cyclin D1 expression. Apoptosis was induced at 2  μM of sorafenib in androgen-sensitive cells, whereas a higher dose of the drug was needed in castration-resistant cell lines. Sorafenib stimulated apoptosis in prostate cancer cell lines through downregulation of myeloid cell leukemia-1 (MCL-1) expression and Akt phosphorylation. Although concentrations of sorafenib required for the antitumor effect in therapy-resistant sublines were higher than those needed in parental cells, the drug showed efficacy in cells which became resistant to bicalutamide and docetaxel respectively. Most interestingly, we show that sorafenib has an inhibitory effect on androgen receptor (AR) and prostate-specific antigen expression. In cells in which AR expression was downregulated by short interfering RNA, the treatment with sorafenib increased apoptosis in an additive manner. In summary, the results of the present study indicate that there is a potential to use sorafenib in prostate cancers as an adjuvant therapy option to current androgen ablation treatments, but also in progressed prostate cancers that become unresponsive to standard therapies.
    Endocrine Related Cancer 03/2012; 19(3):305-19. DOI:10.1530/ERC-11-0298 · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Farnesyl transferase inhibitors (FTIs) inhibit the farnesylation of proteins, including RAS and RHEB (Ras homolog enriched in brain). RAS signals to the RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR (AKT) signaling pathways, which have a major role in melanoma progression. RHEB positively regulates mammalian target of rapamycin (mTOR). We investigated the effects of the FTI lonafarnib alone and in combination with MAPK (mitogen-activated protein kinase) or AKT (acutely transforming retrovirus AKT8 in rodent T-cell lymphoma) pathway inhibitors on proliferation, survival, and invasive tumor growth of melanoma cells. Lonafarnib alone did not sufficiently inhibit melanoma cell growth. Combinations of lonafarnib with AKT pathway inhibitors did not significantly increase melanoma cell growth inhibition. In contrast, combinations of lonafarnib with MAPK pathway inhibitors yielded additional growth-inhibiting effects. In particular, the combination of the FTI lonafarnib with the pan-RAF inhibitor sorafenib synergistically inhibited melanoma cell growth, significantly enhanced sorafenib-induced apoptosis, and completely suppressed invasive tumor growth in monolayer and organotypic cultures, respectively. Apoptosis induction was associated with upregulation of the endoplasmic reticulum stress-related transcription factors p8 and CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), and downregulation of the antiapoptotic Bcl-2 (B-cell lymphoma-2) family protein Mcl-1(myeloid cell leukemia 1). Lonafarnib did not affect MAPK and AKT but did affect mTOR signaling. Together, these findings suggest that the FTI lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells and may therefore represent an effective alternative for melanoma treatment.
    Journal of Investigative Dermatology 10/2010; 131(2):468-479. DOI:10.1038/jid.2010.297 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligolysine-based cationic lipid derivatives were synthesized for delivery of siRNA, and formulated into cationic liposomes. Among various oligolysine-based lipid derivatives differing in lysine residue number and lipid moiety, trilysinoyl oleylamide (TLO)-based liposomes (TLOL) showed the highest delivery efficiency combined with minimal cytotoxicity. Delivery of siRNA using TLOL silenced target genes both in vitro and in vivo. In green fluorescent protein (GFP)-expressing tumor tissue, a significant reduction of fluorescence was observed after intratumoral administration of siGFP using TLOL compared with control siGL2. Intravenous administration of siMcl1 employing pegylated TLOL (pTLOL) reduced the expression of human Mcl1 protein in KB-xenografted tumor tissue. Despite the reduction in target protein Mcl1 expression following such systemic delivery, tumor growth was only slightly reduced compared to a siGL2-treated control group. To potentiate the anticancer activity of siMcl1, the anticancer drug suberoylanilide hydroxamic acid (SAHA) was additionally encapsulated in pTLOL. After intravenous administration of siMcl1 using SAHA-loaded pTLOL (pSTLOL), a significant reduction in tumor growth was observed compared to that seen in animals treated with free SAHA or siGL2 complexed with pSTLOL. The results indicate that pTLOL could be further developed as a systemic delivery system for synergistic anticancer siRNA and a drug.
    Journal of Controlled Release 10/2010; 155(1):60-6. DOI:10.1016/j.jconrel.2010.10.017 · 7.26 Impact Factor