Article

Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2.

Laboratory of Molecular Biology, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2005; 102(29):10375-80. DOI: 10.1073/pnas.0504284102
Source: PubMed

ABSTRACT In most legume nodules, the N2-fixing rhizobia are present as organelle-like structures inside their host cells. These structures, named symbiosomes, contain one or a few rhizobia surrounded by a plant membrane. Symbiosome formation requires the release of bacteria from cell-wall-bound infection threads. In primitive legumes, rhizobia are hosted in intracellular infection threads that, in contrast to symbiosomes, are bound by a cell wall. The formation of symbiosomes is presumed to represent a major step in the evolution of legume-nodule symbiosis, because symbiosomes facilitate the exchange of metabolites between the two symbionts. Here, we show that the genes, which are essential for initiating nodule formation, are also actively transcribed in mature Medicago truncatula nodules in the region where symbiosome formation occurs. At least one of these genes, encoding the receptor kinase DOES NOT MAKE INFECTIONS 2 (DMI2) is essential for symbiosome formation. The protein locates to the host cell plasma membrane and to the membrane surrounding the infection threads. A partial reduction of DMI2 expression causes a phenotype that resembles the infection structures found in primitive legume nodules, because infected cells are occupied by large intracellular infection threads instead of by organelle-like symbiosomes.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Engineering nitrogen-fixing cereals is essential for sustainable food production for the projected global population of 9 billion people in 2050. This process will require engineering cereals for nodule organogenesis and infection by nitrogen-fixing bacteria. The symbiosis signalling pathway is essential to establish both bacterial infection and nodule organogenesis in legumes and is also necessary for the establishment of mycorrhizal colonisation. Hence this signalling pathway is also present in cereals and it should be feasible to engineer this signalling pathway for cereal recognition of nitrogen-fixing bacteria. However, establishing a fully function nitrogen-fixing symbiosis in cereals will probably require additional genetic engineering for bacterial colonisation and nodule organogenesis.
    Current opinion in plant biology 10/2010; 13(5):556-64. · 10.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nitrogen-fixing symbiosis between Aeschynomene indica and photosynthetic bradyrhizobia is the only legume-rhizobium association described to date that does not require lipochito-oligosaccharide Nod factors (NF). To assist in deciphering the molecular basis of this NF-independent interaction, we have developed a protocol for Agrobacterium rhizogenes-mediated transformation of A. indica. The cotransformation frequency (79%), the nodulation efficiency of transgenic roots (90%), and the expression pattern of the 35S Cauliflower mosaic virus promoter in transgenic nodules were all comparable to those obtained for model legumes. We have made use of this tool to monitor the heterologous spatio-temporal expression of the pMtENOD11-β-glucuronidase fusion, a widely used molecular reporter for rhizobial infection and nodulation in both legumes and actinorhizal plants. While MtENOD11 promoter activation was not observed in A. indica roots prior to nodulation, strong reporter-gene expression was observed in the invaded cells of young nodules and in the cell layers bordering the central zone of older nodules. We conclude that pMtENOD11 expression can be used as an infection-related marker in A. indica and that Agrobacterium rhizogenes-mediated root transformation of Aeschynomene spp. will be an invaluable tool for determining the molecular basis of the NF-independent symbiosis.
    Molecular Plant-Microbe Interactions 12/2010; 23(12):1537-44. · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
    Molecular Plant-Microbe Interactions 11/2011; 24(11):1300-9. · 4.31 Impact Factor

Full-text (2 Sources)

View
26 Downloads
Available from
May 26, 2014