The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis

Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara 93106, USA.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.29). 04/2005; 272(1563):585-91. DOI: 10.1098/rspb.2004.2985
Source: PubMed

ABSTRACT We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential.

Download full-text


Available from: Benjamin I. Ruttenberg, May 22, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amphipod Caprella andreae Mayer, 1890 was recorded for the first time in Southern Iberian Peninsula (36°44'15″N, 3°59'38″W). This species is the only obligate rafter of the suborder Caprellidea and has been reported to attach not only to floating objects such as ropes or driftwoods but also to turtle carapaces. Mitochondrial and nuclear markers were used to examine dispersal capabilities and population genetic structure of C. andreae across seven localities in the Mediterranean and Atlantic Ocean collected from floating substrata with different dispersal patterns. The strong population differentiation with no haplotypes shared between populations suggests that C. andreae is quite faithful to the substratum on which it settles. In addition, the proportionally higher genetic diversity displayed in populations living on turtles as well as the presence of highly differentiated haplotypes in the same turtle population may be indicative that these populations survive longer, which could lead C. andreae to prefer turtles instead of floating objects to settle and disperse. Therefore, rafting on floating objects may be sporadic, and ocean currents would not be the most important factor shaping patterns of connectivity and population structure in this species. Furthermore, molecular phylogenetic analyses revealed the existence of a cryptic species whose estimates of genetic divergence are higher than those estimated between C. andreae and other congeneric species (e.g. Caprella dilatata and Caprella penantis). Discovery of cryptic species among widely distributed small marine invertebrates is quite common and, in this case, prompts for a more detailed phylogenetic analysis and taxonomic revision of genus Caprella. On the other hand, this study also means the first record of the gammarids Jassa cadetta and Elasmopus brasiliensis and the caprellid Caprella hirsuta on drifting objects.
    Helgoland Marine Research 09/2013; 67(3):483-497. DOI:10.1007/s10152-012-0337-9 · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine species in the Indo-Pacific have ranges that can span thousands of kilometres, yet studies increasingly suggest that mean larval dispersal distances are less than historically assumed. Gene flow across these ranges must therefore rely to some extent on larval dispersal among intermediate 'stepping-stone' populations in combination with long-distance dispersal far beyond the mean of the dispersal kernel. We evaluate the strength of stepping-stone dynamics by employing a spatially explicit biophysical model of larval dispersal in the tropical Pacific to construct hypotheses for dispersal pathways. We evaluate these hypotheses with coalescent models of gene flow among high-island archipelagos in four neritid gastropod species. Two of the species live in the marine intertidal, while the other two are amphidromous, living in fresh water but retaining pelagic dispersal. Dispersal pathways predicted by the biophysical model were strongly favoured in 16 of 18 tests against alternate hypotheses. In regions where connectivity among high-island archipelagos was predicted as direct, there was no difference in gene flow between marine and amphidromous species. In regions where connectivity was predicted through stepping-stone atolls only accessible to marine species, gene flow estimates between high-island archipelagos were significantly higher in marine species. Moreover, one of the marine species showed a significant pattern of isolation by distance consistent with stepping-stone dynamics. While our results support stepping-stone dynamics in Indo-Pacific species, we also see evidence for nonequilibrium processes such as range expansions or rare long-distance dispersal events. This study couples population genetic and biophysical models to help to shed light on larval dispersal pathways.
    Molecular Ecology 10/2012; 21(22). DOI:10.1111/mec.12031 · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connectivity among marine populations is critical for persistence of metapopulations, coping with climate change, and determining the geographic distribution of species. The influence of pelagic larval duration (PLD) on connectivity has been studied extensively, but relatively little is known about the influence of other biological parameters, such as the survival and behavior of larvae, and the fecundity of adults, on population connectivity. Furthermore, the interaction between the seascape (habitat structure and currents) and these biological parameters is unclear. We explore these interactions using a biophysical model of larval dispersal across the Indo-Pacific. We describe an approach that quantifies geographic patterns of connectivity from demographically relevant to evolutionarily significant levels across a range of species. We predict that at least 95% of larval settlement occurs within 155 km of the source population and within 13 days irrespective of the species' life history, yet long-distant connections remain likely. Self-recruitment is primarily driven by the local oceanography, larval mortality, and the larval precompetency period, whereas broad-scale connectivity is strongly influenced by reproductive output (abundance and fecundity of adults) and the length of PLD. The networks we have created are geographically explicit models of marine connectivity that define dispersal corridors, barriers, and the emergent structure of marine populations. These models provide hypotheses for empirical testing.
    Integrative and Comparative Biology 07/2012; 52(4):525-37. DOI:10.1093/icb/ics101 · 2.97 Impact Factor