Stimulus-induced phosphorylation of PKC θ at the C-terminal hydrophobic-motif in human T lymphocytes

Department of Biochemistry, Royal College of Surgeons in Ireland, Dublin, Leinster, Ireland
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 09/2005; 334(2):619-30. DOI: 10.1016/j.bbrc.2005.06.136
Source: PubMed

ABSTRACT Protein kinase C (PKC) is a family of serine/threonine kinases whose activity is controlled, in part, by phosphorylation on three conserved residues that are located on the catalytic domain of the enzyme, known as the activation-loop, the turn-motif, and the C-terminal hydrophobic-motif sites. Using a panel of phospho-specific antibodies, we have determined that PKC beta(I) and delta are constitutively phosphorylated on all three sites in unstimulated and activated T cells. Although PKC theta is constitutively phosphorylated at the activation-loop and turn-motif sites in T cells, PMA or anti-CD3/CD28 stimulation results in an increase in phosphorylation at the hydrophobic-motif (Ser695), an event that coincides with translocation of the enzyme from the cytosol/cytoskeleton to the membrane. Studies on the stimulus-induced phosphorylation of PKC theta demonstrate that an upstream kinase activity involving a conventional PKC isoform(s) and the PI3-kinase pathway, rather than autophosphorylation or the rapamycin-sensitive mTOR pathway, regulates this site in T lymphocytes. However, hydrophobic-motif phosphorylation does not appear to control membrane translocation, suggesting that this site may control other aspects of PKC theta signalling.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that members of the protein kinase C (PKC) family seem to have important roles in T cells. Focusing on the physiological and non-redundant PKC functions established in primary mouse T cells via germline gene-targeting approaches, our current knowledge defines two particularly critical PKC gene products, PKCθ and PKCα, as the "flavor of PKC" in T cells that appear to have a positive role in signaling pathways that are necessary for full antigen receptor-mediated T cell activation ex vivo and T cell-mediated immunity in vivo. Consistently, in spite of the current dogma that PKCθ inhibition might be sufficient to achieve complete immunosuppressive effects, more recent results have indicated that the pharmacological inhibition of PKCθ, and additionally, at least PKCα, appears to be needed to provide a successful approach for the prevention of allograft rejection and treatment of autoimmune diseases.
    Frontiers in Immunology 08/2012; 3:220. DOI:10.3389/fimmu.2012.00220
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
    Advances in pharmacology (San Diego, Calif.) 01/2013; 66:267-312. DOI:10.1016/B978-0-12-404717-4.00006-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility. In this study, we find a previously unknown role for PKCθ in regulating T cell migration to lymph nodes. PKCθ localizes to the migrating T cell uropod and regulates localization of the MTOC, CD43 and ERM proteins to the uropod. Furthermore, PKCθ-deficient T cells are less responsive to chemokine induced migration and are defective in migration to lymph nodes. Our results reveal a novel role for PKCθ in regulating T cell migration and demonstrate that PKCθ signals downstream of CCR7 to regulate protein localization and uropod formation.
    PLoS ONE 11/2013; 8(11):e78940. DOI:10.1371/journal.pone.0078940 · 3.53 Impact Factor


Available from