Reward-related neuronal activity in the subthalamic nucleus of the monkey.

Laboratoire de Neurobiologie de la Cognition, CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
Neuroreport (Impact Factor: 1.64). 09/2005; 16(11):1241-4. DOI: 10.1097/00001756-200508010-00022
Source: PubMed

ABSTRACT The subthalamic nucleus is a key structure for motor information processing in the basal ganglia. Little is known about its involvement in other aspects of behavior such as motivation. We investigated neuronal activity in the subthalamic nucleus while a monkey performed arm-reaching movements to obtain a liquid reward. Most neurons were modulated both during the movement and reward phases of the task. The changes in activity occurring after or just before the delivery of reward consisted of either increases or decreases in firing and were not directly related to mouth movements. These findings indicate that STN neurons are involved in the detection and expectation of reward, consistent with a role for these neurons in the processing of motivational information.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several hypotheses have been put forward to explain weight gain after deep brain stimulation (DBS), but none provides a fully satisfactory account of this adverse effect. We analyzed the correlation between changes in brain metabolism (using positron emission tomography [PET] imaging) and weight gain after bilateral subthalamic nucleus DBS in patients with Parkinson's disease. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose 3 months before and 4 months after the start of subthalamic nucleus deep brain stimulation in 23 patients with Parkinson's disease. Motor complications (United Parkinson's Disease Rating Scale [UPDRS]-IV scores) and dopaminergic medication were included in the analysis to control for their possible influence on brain metabolism. Mean ± standard deviation (SD) body mass index increased significantly by 0.8 ± 1.5 kg/m2 (P = 0.03). Correlations were found between weight gain and changes in brain metabolism in limbic and associative areas, including the orbitofrontal cortex (Brodmann areas [BAs] 10 and 11), lateral and medial parts of the temporal lobe (BAs 20, 21, 22,39 and 42), anterior cingulate cortex (BA 32), and retrosplenial cortex (BA 30). However, we found no correlation between weight gain and metabolic changes in sensorimotor areas. These findings suggest that changes in associative and limbic processes contribute to weight gain after subthalamic nucleus DBS in Parkinson's disease. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 11/2014; DOI:10.1002/mds.26063 · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Behaviorally-relevant sounds such as conspecific vocalizations are often available for only a brief amount of time; thus, goal-directed behavior frequently depends on auditory short-term memory (STM). Despite its ecological significance, the neural processes underlying auditory STM remain poorly understood. To investigate the role of the auditory cortex in STM, single-and multi-unit activity was recorded from the primary auditory cortex (A1) of two monkeys performing an auditory STM task using simple and complex sounds. Each trial consisted of a sample and test stimulus separated by a 5-s retention interval. A brief wait period followed the test stimulus, after which subjects pressed a button if the sounds were identical (match trials) or withheld button presses if they were different (non-match trials). A number of units exhibited significant changes in firing rate for portions of the retention interval, although these changes were rarely sustained. Instead, they were most frequently observed during the early and late portions of the retention interval, with inhibition being observed more frequently than excitation. At the population level, responses elicited on match trials were briefly suppressed early in the sound period relative to non-match trials. However, during the latter portion of the sound, firing rates increased significantly for match trials and remained elevated throughout the wait period. Related patterns of activity were observed in prior experiments from our lab in the dorsal temporal pole (dTP) and prefrontal cortex (PFC) of the same animals. The data suggest that early match suppression occurs in both A1 and the dTP, whereas later match enhancement occurs first in the PFC, followed by A1 and later in dTP. Because match enhancement occurs first in the PFC, we speculate that enhancement observed in A1 and dTP may reflect top–down feedback. Overall, our findings suggest that A1 forms part of the larger neural system recruited during auditory STM.
    Frontiers in Neuroscience 08/2014; 8. DOI:10.3389/fnins.2014.00250
  • Source


Available from
May 30, 2014