Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation.

Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2005; 102(29):10291-6. DOI: 10.1073/pnas.0504641102
Source: PubMed

ABSTRACT Hutchinson-Gilford progeria syndrome (HGPS), a progeroid syndrome in children, is caused by mutations in LMNA (the gene for prelamin A and lamin C) that result in the deletion of 50 aa within prelamin A. In normal cells, prelamin A is a "CAAX protein" that is farnesylated and then processed further to generate mature lamin A, which is a structural protein of the nuclear lamina. The mutant prelamin A in HGPS, which is commonly called progerin, retains the CAAX motif that triggers farnesylation, but the 50-aa deletion prevents the subsequent processing to mature lamin A. The presence of progerin adversely affects the integrity of the nuclear lamina, resulting in misshapen nuclei and nuclear blebs. We hypothesized that interfering with protein farnesylation would block the targeting of progerin to the nuclear envelope, and we further hypothesized that the mislocalization of progerin away from the nuclear envelope would improve the nuclear blebbing phenotype. To approach this hypothesis, we created a gene-targeted mouse model of HGPS, generated genetically identical primary mouse embryonic fibroblasts, and we then examined the effect of a farnesyltransferase inhibitor on nuclear blebbing. The farnesyltransferase inhibitor mislocalized progerin away from the nuclear envelope to the nucleoplasm, as determined by immunofluoresence microscopy, and resulted in a striking improvement in nuclear blebbing (P < 0.0001 by chi2 statistic). These studies suggest a possible treatment strategy for HGPS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in genes encoding nuclear envelope proteins cause a wide range of inherited diseases, many of which are neurological. We review the genetic causes and what little is known about pathogenesis of these nuclear envelopathies that primarily affect striated muscle, peripheral nerve and the central nervous system. We conclude by providing examples of experimental therapeutic approaches to these rare but important neuromuscular diseases.
    Journal of the American Society for Experimental NeuroTherapeutics 08/2014; · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hutchinson–Gilford progeria syndrome (HGPS, OMIM 176670) is a rare multisystem childhood premature aging disorder linked to mutations in the LMNA gene. The most common HGPS mutation is found at position G608G within exon 11 of the LMNA gene. This mutation results in the deletion of 50 amino acids at the carboxyl-terminal tail of prelamin A, and the truncated protein is called progerin. Progerin only undergoes a subset of the normal post-translational modifications and remains permanently farnesylated. Several attempts to rescue the normal cellular phenotype with farnesyltransferase inhibitors (FTIs) and other compounds have resulted in partial cellular recovery. Using proteomics, we report here that progerin induces changes in the composition of the HGPS nuclear proteome, including alterations to several components of the protein degradation pathways. Consequently, proteasome activity and autophagy are impaired in HGPS cells. To restore protein clearance in HGPS cells, we treated HGPS cultures with sulforaphane (SFN), an antioxidant derived from cruciferous vegetables. We determined that SFN stimulates proteasome activity and autophagy in normal and HGPS fibroblast cultures. Specifically, SFN enhances progerin clearance by autophagy and reverses the phenotypic changes that are the hallmarks of HGPS. Therefore, SFN is a promising therapeutic avenue for children with HGPS.
    Aging cell 12/2014; 14(1). · 7.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, the function of the cell's nucleus has primarily been considered to be the repository for the organism's genome. However, this rather simplistic view is undergoing a major shift, as it is increasingly apparent that the nucleus has functions extending beyond being a mere genome container. Recent findings have revealed that the structural composition of the nucleus changes during development and that many of these components exhibit cell- and tissue-specific differences. Increasing evidence is pointing to the nucleus being integral to the function of the interphase cytoskeleton, with changes to nuclear structural proteins having ramifications affecting cytoskeletal organization and the cell's interactions with the extracellular environment. Many of these functions originate at the nuclear periphery, comprising the nuclear envelope (NE) and underlying lamina. Together, they may act as a "hub" in integrating cellular functions including chromatin organization, transcriptional regulation, mechanosignaling, cytoskeletal organization, and signaling pathways. Interest in such an integral role has been largely stimulated by the discovery that many diseases and anomalies are caused by defects in proteins of the NE/lamina, the nuclear envelopathies, many of which, though rare, are providing insights into their more common variants that are some of the major issues of the twenty-first century public health. Here, we review the contributions that mouse mutants have made to our current understanding of the NE/lamina, their respective roles in disease and the use of mice in developing potential therapies for treating the diseases.
    Current Topics in Developmental Biology 01/2014; 109:1-52. · 4.21 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014

Shao H Yang