Prodynorphin transcripts and proteins differentially expressed and regulated in the adult human brain.

Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden.
The FASEB Journal (Impact Factor: 5.7). 10/2005; 19(11):1543-5. DOI: 10.1096/fj.05-3743fje
Source: PubMed

ABSTRACT Transcription from multiple promoters along with alternative mRNA splicing constitutes the basis for cell-specific gene expression and mRNA and protein diversity. The prodynorphin gene (PDYN) gives rise to prodynorphin (PDYN), precursor to dynorphin opioid peptides that regulate diverse physiological functions and are implicated in various neuropsychiatric disorders. Here, we characterized PDYN transcripts and proteins in the adult human brain and studied PDYN processing and intracellular localization in model cell lines. Seven PDYN mRNAs were identified in the human brain; two of the transcripts, FL1 and FL2, encode the full-length PDYN. The dominant, FL1 transcript shows high expression in limbic-related structures such as the nucleus accumbens and amygdala. The second, FL2 transcript is only expressed in few brain structures such as the claustrum and hypothalamus. FL-PDYN was identified for the first time in the brain as the dominant PDYN protein product. Three novel PDYNs expressed from spliced or truncated PDYN transcripts either lack a central segment but are still processed into dynorphins, or are translated into N-terminally truncated proteins. One truncated PDYN is located in the cell nucleus, suggesting a novel nonopioid function for this protein. The complexity of PDYN expression and diversity of its protein products may be relevant for diverse levels of plasticity in adaptive responses for the dynorphin system.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have recently identified missense mutations in prodynorphin (PDYN), the precursor to dynorphin opioid peptides, as the cause for spinocerebellar ataxia (SCA23) in Dutch ataxia cases. We report a screen of PDYN for mutations in 371 cerebellar ataxia cases, which had a positive family history; most are of French origin. Sequencing revealed three novel putative missense mutations and one heterozygous two-base pair deletion in four independent SCA patients. These variants were absent in 400 matched controls and are located in the highly conserved dynorphin domain. To resolve the pathogenicity of the heterozygous variants, we assessed the peptide production of the mutant PDYN proteins. Two missense mutations raised dynorphin peptide levels, the two-base pair deletion terminated dynorphin synthesis, and one missense mutation did not affect PDYN processing. Given the outcome of our functional analysis, we may have identified at least two novel PDYN mutations in a French and a Moroccan SCA patient. Our data corroborates recent work that also showed that PDYN mutations only account for a small percentage (~0.1 %) of European SCA cases.
    Journal of Neurology 03/2013; · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that brain kappa-opioid receptors (KORs) and dynorphin, the endogenous ligand that binds at these receptors, are involved in regulating states of motivation and emotion. These findings have stimulated interest in the development of KOR-targeted ligands as therapeutic agents. As one example, it has been suggested that KOR antagonists might have a wide range of indications, including the treatment of depressive, anxiety, and addictive disorders, as well as conditions characterized by co-morbidity of these disorders (e.g., post-traumatic stress disorder) A general effect of reducing the impact of stress may explain how KOR antagonists can have efficacy in such a variety of animal models that would appear to represent different disease states. Here, we review evidence that disruption of KOR function attenuates prominent effects of stress. We will describe behavioral and molecular endpoints including those from studies that characterize the effects of KOR antagonists and KOR ablation on the effects of stress itself, as well as on the effects of exogenously delivered corticotropin-releasing factor, a brain peptide that mediates key effects of stress. Collectively, available data suggest that KOR disruption produces anti-stress effects and under some conditions can prevent the development of stress-induced adaptations. As such, KOR antagonists may have unique potential as therapeutic agents for the treatment and even prevention of stress-related psychiatric illness, a therapeutic niche that is currently unfilled.
    Psychopharmacology 07/2013; · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.
    Neuropeptides 10/2013; · 2.07 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014

Similar Publications