A trained spin-glass model for grouping of image primitives.

Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, E01.335, 3584 CX Utrecht, The Netherlands.
IEEE Transactions on Pattern Analysis and Machine Intelligence (Impact Factor: 5.69). 08/2005; 27(7):1172-82. DOI: 10.1109/TPAMI.2005.131
Source: PubMed

ABSTRACT A method is presented that uses grouping to improve local classification of image primitives. The grouping process is based upon a spin-glass system, where the image primitives are treated as possessing a spin. The system is subject to an energy functional consisting of a local and a bilocal part, allowing interaction between the image primitives. Instead of defining the state of lowest energy as the grouping result, the mean state of the system is taken. In this way, instabilities caused by multiple minima in the energy are being avoided. The means of the spins are taken as the a posteriori probabilities for the grouping result. In the paper, it is shown how the energy functional can be learned from example data. The energy functional is defined in such a way that, in case of no interactions between the elements, the means of the spins equal the a priori local probabilities. The grouping process enables the fusion of the a priori local and bilocal probabilities into the a posteriori probabilities. The method is illustrated both on grouping of line elements in synthetic images and on vessel detection in retinal fundus images.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an effective algorithm for automatic tracing of vasculature structures and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from digital images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure. Vascular Landmark Extraction of bifurcations and ending points. The results of automatic retinal vessel extraction using five different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a combined approach to automatic extraction of blood vessels in retinal images. The proposed procedure is composed of two phases: a wavelet transform-based preprocessing phase and a NN-based one. Several neural net topologies and training algorithms are considered with the aim of selecting an effective combined method. Human retinal fundus images, derived from the publicly available ophthalmic database DRIVE, are processed to detect retinal vessels. The approach is tested by considering performances in terms of sensitivity and specificity values obtained from vessel classification. The quality of vessel identifications is evaluated on obtained image by computing both sensitivity values and specificity ones and by relating them in ROC curves. A comparison of performances by ROC curve areas for various methods is reported.
    Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence, 5th International Conference on Intelligent Computing, ICIC 2009, Ulsan, South Korea, September 16-19, 2009, Proceedings; 01/2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vessel structures such as retinal vasculature are important features for computer-aided diagnosis. In this paper, a probabilistic tracking method is proposed to detect blood vessels in retinal images. During the tracking process, vessel edge points are detected iteratively using local grey level statistics and vessel's continuity properties. At a given step, a statistic sampling scheme is adopted to select a number of vessel edge points candidates in a local studying area. Local vessel's sectional intensity profiles are estimated by a Gaussian shaped curve. A Bayesian method with the Maximum a posteriori (MAP) probability criterion is then used to identify local vessel's structure and find out the edge points from these candidates. Evaluation is performed on both simulated vascular and real retinal images. Different geometric shapes and noise levels are used for computer simulated images, whereas real retinal images from the REVIEW database are tested. Evaluation performance is done using the Segmentation Matching Factor (SMF) as a quality parameter. Our approach performed better when comparing it with Sun's and Chaudhuri's methods. ROC curves are also plotted, showing effective detection of retinal blood vessels (true positive rate) with less false detection (false positive rate) than Sun's method.
    Pattern Recognition 04/2012; 45(4):1235-1244. DOI:10.1016/j.patcog.2011.09.019 · 2.58 Impact Factor


Available from
Jun 4, 2014