Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning.

Psychology Department, University of California, Berkeley, 94720, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 01/2006; 94(6):4224-33. DOI: 10.1152/jn.00218.2005
Source: PubMed

ABSTRACT Sleep deprivation impairs hippocampal-dependent learning, which, in turn, is associated with increased survival of newborn cells in the hippocampus. We tested whether the deleterious effects of sleep restriction on hippocampus-dependent memory were associated with reduced cell survival in the hippocampus. We show that sleep restriction impaired hippocampus-dependent learning and abolished learning-induced neurogenesis. Animals were trained in a water maze on either a spatial learning (hippocampus-dependent) task or a nonspatial (hippocampus-independent) task for 4 days. Sleep-restricted animals were kept awake for one-half of their rest phase on each of the training days. Consistent with previous reports, animals trained on the hippocampus-dependent task expressed increased survival of newborn cells in comparison with animals trained on the hippocampus-independent task. This increase was abolished by sleep restriction that caused overall reduced cell survival in all animals. Sleep restriction also selectively impaired spatial learning while performance in the nonspatial task was, surprisingly, improved. Further analysis showed that in both training groups fully rested animals applied a spatial strategy irrespective of task requirements; this strategy interfered with performance in the nonspatial task. Conversely, in sleep-restricted animals, this preferred spatial strategy was eliminated, favoring the use of nonspatial information, and hence improving performance in the nonspatial task. These findings suggest that sleep loss altered behavioral strategies to those that do not depend on the hippocampus, concomitantly reversing the neurogenic effects of hippocampus-dependent learning.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Se reconoce que el ejercicio puede aumentar la neurogénesis adulta y este fenómeno podría evidenciarse en diferentes niveles (comportamental, celular, electrofisiológico). El objetivo del estudio fue evaluar el efecto de la estimulación de la neurogénesis hipocampal mediante el ejercicio, sobre la memoria de trabajo evaluada mediante una tarea de laberinto en T en ratas macho adultas de la sepa Wistar. Se utilizó un diseño experimental de dos grupos en el cual un grupo experimental GE (n = 12) fue sometido a un programa de ejercicio forzado durante 5 días, al mismo tiempo que se administró un marcador de síntesis de ADN (Bromo-deoxi-uridina [BrdU](50 mg/kg IP.), los animales control GC (n = 9) no fueron expuestos al ejercicio pero se les administró igual dosis de BrdU. Tres (3) animales (GE = 2; GC = 1) se sometieron a cirugía de implantación de electrodos en la corteza frontal medial (+3,0 mm AP; ± 0.5 mm ML; -3.0mm DV) e hipocampo (-3.0mm AP; ± 1.8mm ML; -3.5mm DV) para registro electroencefalográfico durante la ejecución en el laberinto en T. 6-8 semanas después de la aplicación del ejercicio se evaluó la memoria de trabajo en laberinto en T y se analizaron cuatro (4) días de elección evaluando la alternancia de las opciones como indicador de memoria de trabajo. No se encontró diferencia comportamental entre los grupos experimental y control en variables comportamentales (alternancia, índice de preferencia, tiempo de respuesta, tiempo de ensayo, consumo de comida). El registro electroencefalográfico de los animales no mostró una tendencia a la coherencia entre las áreas registradas, siendo éste un indicador fisiológico del proceso de elección. En cuanto a la cantidad de nuevas neuronas no se encontraron diferencias por grupos.
    12/2014, Degree: Master, Supervisor: Fernando Cardenas; Manuel Rojas
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptomic studies have revealed that the brains of sleeping and awake animals differ significantly at the molecular level, with hundreds of brain transcripts changing their expression across behavioral states. However, it was unclear how sleep affects specific cell types, such as oligodendrocytes, which make myelin in the healthy brain and in response to injury. In this review, I summarize the recent findings showing that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of all membranes and of myelin in particular. In addition, I will discuss the effect of sleep and wake on oligodendrocyte precursor cells (OPCs), providing a working hypothesis on the function of REM sleep and acetylcholine in OPC proliferation.
    01/2015; 1(1). DOI:10.1007/s40675-014-0008-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main mystery about sleep is why we do not do more of it. Almost every type of human function or dysfunction involves sleep disruption, from our perception of sleep as an impediment to our social and professional lives, thus direct- ing our schedules to restrict the time we allocate for sleep; to psychiatric disorders, the majority of which interfere with sleep patterns. This is even more enigmatic consider- ing the overlap between sleep regulatory mechanisms and reward systems, as will be outlined here. Like the major- ity of psychiatric disorders, sleep disturbances are a central feature of addictions, with different substances associated with divergent effects on sleep regulation and subjective sleep quality. Clearly, the long- and short-term pharmaco- logical effects of a psychoactive drug alter the functional- ity of brain systems associated with arousal states; hence, it would be expected that continued use of such substances would impact sleep patterns. However, the links between the motivational effects of drug use and sleep are far more complex. I propose a model that will demonstrate that key mechanisms involved in the susceptibility to engage in drug-seeking behaviors and to develop an addiction are linked to sleep and sleep disruption. The emerging model suggests that the same systems that reinforce drug-seeking behaviors are also activated during sleep. As replay patterns during sleep have been linked to consolidation of memories, sleep, per se, may have a role in the creation of addiction. With this in mind, the proposed model may also provide a tentative answer to the questions posed, suggesting that sleep deprivation, at least in a mild form, is reinforcing.
    Modulation of Sleep by Obesity, Diabetes, Age, and Diet, 1st edited by R. Watson, 01/2015: chapter 37: pages 337-347; Elsevier., ISBN: 9780124201682