The inv dup(15) or idic(15) syndrome: a clinically recognisable neurogenetic disorder.

Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, via dei Giaicnti 2, Calambrone, Pisa 56018, Italy.
Brain and Development (Impact Factor: 1.54). 09/2005; 27(5):365-9. DOI: 10.1016/j.braindev.2004.08.006
Source: PubMed

ABSTRACT The chromosome region 15q11q13 is known for its instability, and many rearrangements may occur in this imprinted segment: deletions associated either with Angelman syndrome (AS) or with Prader-Willi syndrome (PWS), according to parental origin; translocations; inversions; and supernumerary marker chromosomes formed by the inverted duplication of proximal chromosome 15. Inv dup(15) constitute the most common of the heterogeneous group of the extra structurally abnormal chromosomes, and their presence results in tetrasomy 15p and partial tetrasomy 15q. Inv dup(15), containing the Prader-Willi/Angelman syndrome region, are associated with altered behaviour, developmental delay/mental retardation, and seizures/epilepsy. Clinicians should suspect this syndrome in any infant/child with early central hypotonia, minor dysmorphic features, developmental delay, autism or autistic-like behaviour, and who subsequently develops hard to control seizures/epilepsy. Diagnosis is confirmed by standard cytogenetic techniques and FISH analysis. Although, about 100 cases have been reported to date, limited data are available on the natural history. To obtain better information on diagnosis and outcome in a clinical setting, we reviewed the available literature on clinical and behavioural phenotype of inv dup(15) syndrome.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a number of behavioral and social features. Although the etiology of most cases of ASD is idiopathic, a significant number of cases can be attributed to genetic causes, such as chromosome 15q duplications [dup(15q)]. Recent neuropathological investigations have provided evidence for distinct patterns of heterotopias and dysplasias in ASD and subjects with both ASD and dup(15q). Individuals with ASD characteristically have hearing difficulties and we have previously demonstrated significant and consistent hypoplasia in a number of auditory brainstem nuclei in subjects with ASD. Herein, we compare results from a morphometric investigation of auditory brainstem nuclei in subjects with ASD, dup(15q) and controls. Our observations in subjects with ASD support our previous reports. However, in subjects with dup(15q), we find significantly fewer neurons and in many nuclei, neurons were significantly smaller than in ASD subjects. Finally, we find a notably higher incidence of ectopic neurons in dup(15q). These results suggest that in the brainstem, these neuropathological conditions may evolve from some of the same developmental errors but are distinguished on microscopic features. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
    Neuroscience 12/2014; 286. DOI:10.1016/j.neuroscience.2014.11.033 · 3.33 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main reason for the current lack of effective treatments for the core symptoms of autism is our limited understanding of the biological mechanisms underlying this heterogeneous group of disorders. A primary value of genetic research is enhancing our insight into the biology of autism through the study of identified autism risk genes. In the current review we discuss (1) the genes and loci that are associated with autism, (2) how these provide us with essential cues as to what neurobiological mechanisms may be involved, and (3) how these mechanisms may be used as targets for novel treatments. Next, we provide an overview of currently ongoing clinical trials registered at with a variety of compounds. Finally, we review current approaches used to translate knowledge derived from gene discovery into novel pharmaceutical compounds and discuss their pitfalls and problems. An increasing number of genetic variants associated with autism have been identified. This will generate new ideas about the biological mechanisms involved in autism, which in turn may provide new leads for the development of novel pharmaceutical compounds. To optimize this pipeline of drug discovery, large-scale international collaborations are needed for gene discovery, functional validation of risk genes, and improvement of clinical outcome measures and clinical trial methodology in autism.
    Psychopharmacology 11/2013; DOI:10.1007/s00213-013-3334-z · 3.99 Impact Factor