Cellular and molecular mechanisms that underlie Entamoeba histolytica pathogenesis: Prospects for intervention

Department of Genetics, Biochemistry and Life Science Studies, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA.
Expert Reviews in Molecular Medicine (Impact Factor: 5.15). 08/2005; 7(13):1-19. DOI: 10.1017/S1462399405009622
Source: PubMed


The protozoan parasite Entamoeba histolytica is the causative agent of amoebic dysentery. It is prevalent in developing countries that cannot prevent its fecal-oral spread and ranks second in worldwide causes of morbidity by parasitic infection. Improvements in sanitation would help curb disease spread. However, a lack of significant progress in this area has resulted in the need for a better understanding of the molecular and cellular biology of pathogenesis in order to design novel methods of disease treatment and prevention. Recent insight into the cellular mechanisms regulating virulence of E. histolytica has indicated that processes such as endocytosis, secretion, host cell adhesion and encystation play major roles in the infectious process. This review focuses on components of the molecular machinery that govern these cellular processes and their role in virulence, and discusses how an understanding of this might reveal opportunities to interfere with E. histolytica infection.

7 Reads
  • Source
    • "Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is causative agent of amoebic dysentery and liver abscess (reviewed in [8]) and is prevalent in developing countries that cannot prevent its fecal-oral spread. The pathogen is responsible for considerable global morbidity and mortality. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics.
    PLoS ONE 08/2012; 7(8):e43025. DOI:10.1371/journal.pone.0043025 · 3.23 Impact Factor
  • Source
    • "Entamoeba histolytica is a protozoan parasite that is the causative agent of amebic dysentery and liver abscess. It is prevalent in developing countries that cannot prevent its fecal–oral spread (Laughlin and Temesvari, 2005) and infection leads to 100,000 deaths annually (Ravdin, 1995; Walsh, 1986). Amebic pathogenicity is manifested through several processes that depend on trophozoite motility. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro interaction of Entamoeba histolytica trophozoites with fibronectin (FN) induces redistribution of the amoebic fibronectin receptor (β1EhFNR). Trafficking of beta1 integrins is important for cell adhesion and migration in higher eukaryotes and requires the participation of Rab proteins. In E. histolytica, the machinery involved in integrin trafficking is not completely known. EhRab7 is a 24.5-kDa protein whose alignment with other Rab7 proteins demonstrated that it shared significant homology with Rab7 proteins from other organisms, including humans. Using different types of microscopy (fluorescence and confocal microscopy), it was established that Rab7 and the actin cytoskeleton participated in the mobilization of β1EhFNR in FN-stimulated trophozoites. β1EhFNR and Rab7 co-localized only in vesicular structures at 5 min, and at longer time (1 h), both co-localized in both plasma membrane and in vesicular structures; at the same time, Rab7 co-localized with specific actin structures (phagocytic vacuoles). At 5 h the β1EhFNR, Rab7, and actin co-localized at the plasma membrane, and only β1EhFNR and Rab7 decorated vesicles of different sizes. Actin and Rab7 co-localized in a cap-like structure at one end of the cell. Fluorescence resonance energy transfer and electron microscopy confirmed the close interaction between β1EhFNR and Rab7. Moreover, the use of a lysosome-specific marker (LysoTracker) and a Golgi-specific marker (NBD C(6)-ceramide) allowed us to establish that, at some point within the endocytic route, β1EhFNR and Rab7 co-localized within a lysosome-type organelle, but not a Golgi-like organelle, which indicated that this integrin-like molecule was returned to the plasma membrane via exocytic or secretory vesicles.
    Microscopy Research and Technique 03/2012; 75(3):285-93. DOI:10.1002/jemt.21056 · 1.15 Impact Factor
  • Source
    • "Entamoeba histolytica, the causative agent of human amoebiasis provokes the second worldwide highest rates of morbidity and mortality due to protozoa [1]. E. histolytica trophozoites obtain host nutrients from a very active uptake and efficient engulfment of bacteria, red blood cells (RBC), and cell debris [2], which makes them to be considered as professional phagocytes. Since E. histolytica phagocytosis-deficient mutants have a diminished virulence in vitro and in vivo [3, 4], and nonvirulent E. histolytica strains exhibit reduced rates of phagocytosis [5], this cellular event has been defined as a key virulence factor. "
    [Show abstract] [Hide abstract]
    ABSTRACT: EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [(35)S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.
    BioMed Research International 02/2012; 2012:657942. DOI:10.1155/2012/657942 · 2.71 Impact Factor
Show more