Article

Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling.

Division of Bioinformatics, Z-Tech Corporation, 3900 NCTR Road, Jefferson, AR 72079, USA.
BMC Bioinformatics (Impact Factor: 2.67). 08/2005; 6 Suppl 2:S6. DOI: 10.1186/1471-2105-6-S2-S6
Source: PubMed

ABSTRACT The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer.
In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism.
The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation.

0 Bookmarks
 · 
166 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development.
    01/2013; 2013:624681. DOI:10.1155/2013/624681
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Predicting molecular responses in human by extrapolating results from model organisms requires a precise understanding of the architecture and regulation of biological mechanisms across species. Here, we present a large-scale comparative analysis of organ and tissue transcriptomes involving the three mammalian species human, mouse and rat. To this end, we created a unique, highly standardized compendium of tissue expression. Representative tissue specific datasets were aggregated from more than 33,900 Affymetrix expression microarrays. For each organism, we created two expression datasets covering over 55 distinct tissue types with curated data from two independent microarray platforms. Principal component analysis (PCA) revealed that the tissue-specific architecture of transcriptomes is highly conserved between human, mouse and rat. Moreover, tissues with related biological function clustered tightly together, even if the underlying data originated from different labs and experimental settings. Overall, the expression variance caused by tissue type was approximately 10 times higher than the variance caused by perturbations or diseases, except for a subset of cancers and chemicals. Pairs of gene orthologs exhibited higher expression correlation between mouse and rat than with human. Finally, we show evidence that tissue expression profiles, if combined with sequence similarity, can improve the correct assignment of functionally related homologs across species. The results demonstrate that tissue-specific regulation is the main determinant of transcriptome composition and is highly conserved across mammalian species.
    BMC Genomics 10/2013; 14(1):716. DOI:10.1186/1471-2164-14-716 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was performed to produce a transcriptional database of the intestinal transporters of beagle dogs. Total RNA was isolated from the duodenum and the expression of various mRNAs was measured using GeneChip(®) oligonucleotide arrays. A total of 124 transporter genes were detected. Genes for fatty acid, peptide, amino acid and glucose and multidrug resistance/multidrug resistance-associated protein (MDR/MRP) transport were expressed at relatively higher levels than the other transporter types. The dogs exhibited abundant mRNA expression of the fatty acid transporters (fatty acid binding proteins, FABPs) FABP1 and FABP2, the ATP-binding cassettes (ABCs) ABCB1A and ABCC2, the amino acid/peptide transporters SLC3A1 and SLC15A1, the glucose transporters SLC5A1, SLC2A2 and SLC2A5, the organic anion transporter SLC22A9 and the phosphate transporters SLC20A1 and SLC37A4. In mice, a similar profile was observed with high expression of the glucose transporters SLC5A1 and SLC2As, the fatty acid transporters FABP1 and FABP2, the MDR/MRP transporters ABCB1A and ABCC2 and the phosphate transporter SLC37A4. However, the overall data reveal diverse transcriptomic profiles of the intestinal transporters of dogs and mice. Therefore, the current database may be useful for comparing the intestinal transport systems of dogs with those of mice to better evaluate xenobiotics.
    Experimental and therapeutic medicine 01/2013; 5(1):308-314. DOI:10.3892/etm.2012.777 · 0.94 Impact Factor
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Download
38 Downloads
Available from
May 27, 2014