Article

Microarray scanner calibration curves: characteristics and implications.

National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA.
BMC Bioinformatics (Impact Factor: 2.67). 08/2005; 6 Suppl 2(Suppl 2):S11. DOI: 10.1186/1471-2105-6-S2-S11
Source: PubMed

ABSTRACT Microarray-based measurement of mRNA abundance assumes a linear relationship between the fluorescence intensity and the dye concentration. In reality, however, the calibration curve can be nonlinear.
By scanning a microarray scanner calibration slide containing known concentrations of fluorescent dyes under 18 PMT gains, we were able to evaluate the differences in calibration characteristics of Cy5 and Cy3. First, the calibration curve for the same dye under the same PMT gain is nonlinear at both the high and low intensity ends. Second, the degree of nonlinearity of the calibration curve depends on the PMT gain. Third, the two PMTs (for Cy5 and Cy3) behave differently even under the same gain. Fourth, the background intensity for the Cy3 channel is higher than that for the Cy5 channel. The impact of such characteristics on the accuracy and reproducibility of measured mRNA abundance and the calculated ratios was demonstrated. Combined with simulation results, we provided explanations to the existence of ratio underestimation, intensity-dependence of ratio bias, and anti-correlation of ratios in dye-swap replicates. We further demonstrated that although Lowess normalization effectively eliminates the intensity-dependence of ratio bias, the systematic deviation from true ratios largely remained. A method of calculating ratios based on concentrations estimated from the calibration curves was proposed for correcting ratio bias.
It is preferable to scan microarray slides at fixed, optimal gain settings under which the linearity between concentration and intensity is maximized. Although normalization methods improve reproducibility of microarray measurements, they appear less effective in improving accuracy.

0 Bookmarks
 · 
163 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Microarray experiments are a centerpiece of postgenomics life sciences and the current efforts to develop systems diagnostics for personalized medicine. The majority of antibody microarray experiments are fluorescence-based, which utilizes a scanner to convert target signals into image files for subsequent quantification. Certain scan parameters such as the laser power and photomultiplier tube gain (PMT) can influence the readout of fluorescent intensities and thus may affect data quantitation. To date, however, there is no consensus of how to determine the optimal settings of microarray scanners. Here we show that different settings of the laser power and PMT not only affect the signal intensities but also the accuracy of antibody microarray experiments. More importantly, we demonstrate an experimental approach using two fluorescent dyes to determine optimal settings of scan parameters for microarray experiments. These measures provide added quality control of microarray experiments, and thus help to improve the accuracy of quantitative outcome in microarray experiments in the above contexts.
    Omics: a journal of integrative biology 04/2014; DOI:10.1089/omi.2013.0095 · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Sporadic Amyotrophic Lateral Sclerosis (sALS) is a devastating, complex disease of unknown etiology. We studied this disease with microarray technology to capture as much biological complexity as possible. The Affymetrix-focused BaFL pipeline takes into account problems with probes that arise from physical and biological properties, so we adapted it to handle the long-oligonucleotide probes on our arrays (hence LO-BaFL). The revised method was tested against a validated array experiment and then used in a meta-analysis of peripheral white blood cells from healthy control samples in two experiments. We predicted differentially expressed (DE) genes in our sALS data, combining the results obtained using the TM4 suite of tools with those from the LO-BaFL method. Those predictions were tested using qRT-PCR assays. Results LO-BaFL filtering and DE testing accurately predicted previously validated DE genes in a published experiment on coronary artery disease (CAD). Filtering healthy control data from the sALS and CAD studies with LO-BaFL resulted in highly correlated expression levels across many genes. After bioinformatics analysis, twelve genes from the sALS DE gene list were selected for independent testing using qRT-PCR assays. High-quality RNA from six healthy Control and six sALS samples yielded the predicted differential expression for 7 genes: TARDBP, SKIV2L2, C12orf35, DYNLT1, ACTG1, B2M, and ILKAP. Four of the seven have been previously described in sALS studies, while ACTG1, B2M and ILKAP appear in the context of this disease for the first time. Supplementary material can be accessed at: http://webpages.uncc.edu/~cbaciu/LO-BaFL/supplementary_data.html . Conclusion LO-BaFL predicts DE results that are broadly similar to those of other methods. The small healthy control cohort in the sALS study is a reasonable foundation for predicting DE genes. Modifying the BaFL pipeline allowed us to remove noise and systematic errors, improving the power of this study, which had a small sample size. Each bioinformatics approach revealed DE genes not predicted by the other; subsequent PCR assays confirmed seven of twelve candidates, a relatively high success rate.
    BMC Bioinformatics 09/2012; 13(1). DOI:10.1186/1471-2105-13-244 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R2≈0.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.
    Nature Biotechnology 08/2014; DOI:10.1038/nbt.3001 · 39.08 Impact Factor

Full-text (3 Sources)

Download
43 Downloads
Available from
May 21, 2014