Functional avidity directs T-cell fate in autoreactive CD4+ T cells.

Benaroya Research Institute at Virginia Mason, 1201 Ninth Ave, Seattle, WA 98101, USA.
Blood (Impact Factor: 9.78). 11/2005; 106(8):2798-805. DOI: 10.1182/blood-2004-12-4848
Source: PubMed

ABSTRACT Major histocompatibility complex class II tetramer staining and activation analysis identified 2 distinct types of antigen-specific CD4+ T cells in the peripheral blood of humans with type 1 (autoimmune) diabetes. T cells with low-avidity recognition of peptide-MHC ligands had low sensitivity to activation and inefficient activation-induced apoptosis. In contrast, high-avidity T cells were highly sensitive to antigen-induced cell death through apoptotic mechanisms, and both apoptosis-resistant high- and low-avidity T cells that survived prolonged tetramer treatment were rendered anergic to restimulation by antigen. In addition, however, apoptosis-resistant high-avidity T cells acquired regulatory features, being able to suppress both antigen-specific and nonspecific CD4+ T-cell responses. This suppression was contact-dependent and correlated with the down-regulation of HLA class II and costimulatory molecules on antigen-presenting cells, including B cells and dendritic cells. T cells face a variety of fates following antigen exposure, including the paradoxic maintenance of high-avidity autoreactive T cells in the peripheral circulation, perhaps due to this capability of acquiring anergic and suppressive properties. Regulation via down-modulation of antigen-presenting cell function, a form of cell-to-cell licensing for suppression, also offers possibilities for the application of peptide-MHC therapeutics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased attention has been drawn to the important role played by regulatory T-cells (Treg) in immune homoeostasis. However, the small numbers of Tregs make them elusive to study. We investigated the cryostability of Tregs and whether they can be expanded from cryopreserved peripheral blood mononuclear cells (PBMCs). Further, to elucidate if there is a difference in ex-vivo frequency or in vitro expansion of Tregs among T1D children (n=9), high-risk (n=7) and healthy (n=10) individuals, Tregs defined as CD4(+)CD25(+)CD127(lo/-) were isolated from cryopreserved PBMCs. Cryopreserved PBMCs maintained a stable expression of Treg-markers. Tregs were efficiently expanded in vitro from all donors and Tregs from T1D children acquired higher FOXP3 expression compared to healthy subjects. T1D children had a significantly lower percentage of Tregs among CD4(+) T-cells and also lower Treg to CD4(+)CD25(-) cell ratios compared to healthy individuals.
    Results in immunology. 01/2011; 1(1):36-44.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defining the role of T-cell avidity and killing efficacy in forming immunological response(s), leading to relapse-remission and autoantibody release in autoimmune type 1 diabetes (T1D), remains incompletely understood. Using competition-based population models of T- and B-cells, we provide a predictive tool to determine how these two parametric quantities, namely, avidity and killing efficacy, affect disease outcomes. We show that, in the presence of T-cell competition, successive waves along with cyclic fluctuations in the number of T-cells are exhibited by the model, with the former induced by transient bistability and the latter by transient periodic orbits. We hypothesize that these two immunological processes are responsible for making T1D a relapsing-remitting disease within prolonged but limited durations. The period and the number of peaks of these two processes differ, making them potential candidates to determine how plausible waves and cyclic fluctuations are in producing such effects. By assuming that T-cell and B-cell avidities are correlated, we demonstrate that autoantibodies associated with the higher avidity T-cell clones are first to be detected, and they reach their detectability level faster than those associated with the low avidity clones, independent of what T-cell killing efficacies are. Such outcomes are consistent with experimental observations in humans and they provide a rationale for observing rapid and slow progressors of T1D in high risk subjects. Our analysis of the models also reveals that it is possible to improve disease outcomes by unexpectedly increasing the avidity of certain subclones of T-cells. The decline in the number of [Formula: see text]-cells in these cases still occurs, but it terminates early, leaving sufficient number of functioning [Formula: see text]-cells in operation and the affected individual asymptomatic. These results indicate that the models presented here are of clinical relevance because of their potential use in developing predictive algorithms of rapid and slow progression to clinical T1D.
    PLoS ONE 04/2014; 9(4):e93326. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4(+) and CD8(+) T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
    Pediatric Diabetes 05/2014; 15(3):162-74. · 2.13 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014