The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine.

Division of Dermatology, Department of Medicine and Specialty Training and Advanced Research Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1747, USA.
The Journal of Immunology (Impact Factor: 5.52). 09/2005; 175(3):1983-90.
Source: PubMed

ABSTRACT Activation of innate immune cells through TLR triggers immunomodulating events that enhance cell-mediated immunity, raising the possibility that ligands to these receptors might act as adjuvants in conjunction with T cell activating vaccines. In this report, topical imiquimod, a synthetic TLR7 agonist, significantly enhanced the protective antitumor effects of a live, recombinant listeria vaccine against murine melanoma. This tumor protective effect was not dependent on direct application to the tumor and was associated with an increase in tumor-associated and splenic dendritic cells. Additionally, the combination of imiquimod treatment with prior vaccination led to development of localized vitiligo. These findings indicate that activation of the innate immune system with TLR ligands stimulates dendritic cell activity resulting in a bypass of peripheral tolerance and enhanced antitumor activity. The results of these studies have broad implications for future designs of immunotherapeutic vaccines against tumors and the treatment of metastatic melanoma.

  • [Show abstract] [Hide abstract]
    ABSTRACT: For over a century, inactivated or attenuated bacteria have been employed in the clinic as immunotherapies to treat cancer, starting with the Coley's vaccines in the 19th century and leading to the currently approved bacillus Calmette-Guérin vaccine for bladder cancer. While effective, the inflammation induced by these therapies is transient and not designed to induce long-lasting tumor-specific cytolytic T lymphocyte (CTL) responses that have proven so adept at eradicating tumors. Therefore, in order to maintain the benefits of bacteria-induced acute inflammation but gain long-lasting anti-tumor immunity, many groups have constructed recombinant bacteria expressing tumor-associated antigens (TAAs) for the purpose of activating tumor-specific CTLs. One bacterium has proven particularly adept at inducing powerful anti-tumor immunity, Listeria monocytogenes (Lm). Lm is a gram-positive bacterium that selectively infects antigen-presenting cells wherein it is able to efficiently deliver tumor antigens to both the MHC Class I and II antigen presentation pathways for activation of tumor-targeting CTL-mediated immunity. Lm is a versatile bacterial vector as evidenced by its ability to induce therapeutic immunity against a wide-array of TAAs and specifically infect and kill tumor cells directly. It is for these reasons, among others, that Lm-based immunotherapies have delivered impressive therapeutic efficacy in preclinical models of cancer for two decades and are now showing promise clinically. In this review, we will provide an overview of the history leading up to the development of current Lm-based immunotherapies, the advantages and mechanisms of Lm as a therapeutic vaccine vector, the preclinical experience with Lm-based immunotherapies targeting a number of malignancies, and the recent findings from clinical trials along with concluding remarks on the future of Lm-based tumor immunotherapies.
    Frontiers in Cellular and Infection Microbiology 01/2014; 4:51. · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pore-forming toxin listeriolysin O (LLO), which is produced by Listeria monocytogenes, mediates bacterial phagosomal escape and facilitates bacterial multiplication during infection. This toxin has recently gained attention because of its confirmed role in the controlled and specific modulation of the immune response. Currently, cancer immunotherapies are focused on conquering the immune tolerance induced by poorly immunogenic tumor antigens and eliciting strong, lasting immunological memory. An effective way to achieve these goals is the co-administration of potent immunomodulatory adjuvant components with vaccine vectors. LLO, a toxin that belongs to the family of cholesterol-dependent cytolysins (CDCs), exhibits potent cell type-non-specific toxicity and is a source of dominant CD4 (+) and CD8 (+) T cell epitopes. According to recent research, in addition to its effective cytotoxicity as a cancer immunotherapeutic drug, the non-specific adjuvant property of LLO makes it promising for the development of efficacious anti-tumor vaccines.
    Human vaccines & immunotherapeutics. 02/2013; 9(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imiquimod and resiquimod represent Toll-like receptor (TLR) 7 and 8 agonists, which emerged as attractive candidates for tumor therapy. To elucidate immune cells, which mainly contribute to TLR7/8-mediated antitumoral activity, we investigated the impact of imiquimod and resiquimod on native human 6-sulfo LacNAc (slan) dendritic cells (DCs). We found that both TLR7/8 agonists significantly improve the release of various proinflammatory cytokines by slanDCs and promote their tumor-directed cytotoxic activity. Furthermore, resiquimod efficiently augmented the ability of slanDCs to stimulate T cells and natural killer cells. These results indicate that imiquimod and resiquimod trigger various immunostimulatory properties of slanDCs, which may contribute to their antitumor effects.
    Cancer letters 02/2013; · 5.02 Impact Factor

Full-text (2 Sources)

Available from
Sep 12, 2014