Article

The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine.

Division of Dermatology, Department of Medicine and Specialty Training and Advanced Research Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1747, USA.
The Journal of Immunology (Impact Factor: 5.52). 09/2005; 175(3):1983-90. DOI: 10.4049/jimmunol.175.3.1983
Source: PubMed

ABSTRACT Activation of innate immune cells through TLR triggers immunomodulating events that enhance cell-mediated immunity, raising the possibility that ligands to these receptors might act as adjuvants in conjunction with T cell activating vaccines. In this report, topical imiquimod, a synthetic TLR7 agonist, significantly enhanced the protective antitumor effects of a live, recombinant listeria vaccine against murine melanoma. This tumor protective effect was not dependent on direct application to the tumor and was associated with an increase in tumor-associated and splenic dendritic cells. Additionally, the combination of imiquimod treatment with prior vaccination led to development of localized vitiligo. These findings indicate that activation of the innate immune system with TLR ligands stimulates dendritic cell activity resulting in a bypass of peripheral tolerance and enhanced antitumor activity. The results of these studies have broad implications for future designs of immunotherapeutic vaccines against tumors and the treatment of metastatic melanoma.

0 Bookmarks
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: For over a century, inactivated or attenuated bacteria have been employed in the clinic as immunotherapies to treat cancer, starting with the Coley's vaccines in the 19th century and leading to the currently approved bacillus Calmette-Guérin vaccine for bladder cancer. While effective, the inflammation induced by these therapies is transient and not designed to induce long-lasting tumor-specific cytolytic T lymphocyte (CTL) responses that have proven so adept at eradicating tumors. Therefore, in order to maintain the benefits of bacteria-induced acute inflammation but gain long-lasting anti-tumor immunity, many groups have constructed recombinant bacteria expressing tumor-associated antigens (TAAs) for the purpose of activating tumor-specific CTLs. One bacterium has proven particularly adept at inducing powerful anti-tumor immunity, Listeria monocytogenes (Lm). Lm is a gram-positive bacterium that selectively infects antigen-presenting cells wherein it is able to efficiently deliver tumor antigens to both the MHC Class I and II antigen presentation pathways for activation of tumor-targeting CTL-mediated immunity. Lm is a versatile bacterial vector as evidenced by its ability to induce therapeutic immunity against a wide-array of TAAs and specifically infect and kill tumor cells directly. It is for these reasons, among others, that Lm-based immunotherapies have delivered impressive therapeutic efficacy in preclinical models of cancer for two decades and are now showing promise clinically. In this review, we will provide an overview of the history leading up to the development of current Lm-based immunotherapies, the advantages and mechanisms of Lm as a therapeutic vaccine vector, the preclinical experience with Lm-based immunotherapies targeting a number of malignancies, and the recent findings from clinical trials along with concluding remarks on the future of Lm-based tumor immunotherapies.
    Frontiers in Cellular and Infection Microbiology 01/2014; 4:51. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic maturation and T cell stimulation are two functional attributes of DCs critical for immune induction. The combination of antigens, including those from cancer, with Toll-like receptor (TLR) ligands induces far superior cellular immune responses compared to antigen alone. In this study, IFN-gamma treatment of bone marrow-derived DC, followed by incubation with the TLR2, TLR4, or TLR9 agonists, enhanced DC activation compared to TLR ligation alone. Most notably, the upregulation of CD40 with LPS stimulation and CD86 with CpG stimulation was observed in in vitro cultures. Similarly, IFN-gamma coinjected with TLR ligands was able to promote DC activation in vivo, with DCs migrating from the site of immunization to the popliteal lymph nodes demonstrating increased expression of CD80 and CD86. The heightened DC activation translated to a drastic increase in T cell stimulatory capacity in both antigen independent and antigen dependent fashions. This is the first time that IFN-gamma has been shown to have a combined effect with TLR ligation to enhance DC activation and function. The results demonstrate the novel use of IFN-gamma together with TLR agonists to enhance antigen-specific T cell responses, for applications in the development of enhanced vaccines and drug targets against diseases including cancer.
    Journal of drug delivery. 01/2013; 2013:516749.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imiquimod and resiquimod represent Toll-like receptor (TLR) 7 and 8 agonists, which emerged as attractive candidates for tumor therapy. To elucidate immune cells, which mainly contribute to TLR7/8-mediated antitumoral activity, we investigated the impact of imiquimod and resiquimod on native human 6-sulfo LacNAc (slan) dendritic cells (DCs). We found that both TLR7/8 agonists significantly improve the release of various proinflammatory cytokines by slanDCs and promote their tumor-directed cytotoxic activity. Furthermore, resiquimod efficiently augmented the ability of slanDCs to stimulate T cells and natural killer cells. These results indicate that imiquimod and resiquimod trigger various immunostimulatory properties of slanDCs, which may contribute to their antitumor effects.
    Cancer letters 02/2013; · 5.02 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Sep 12, 2014