Effects of telomerase and telomere length on epidermal stem cell behavior

Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain.
Science (Impact Factor: 31.48). 09/2005; 309(5738):1253-6. DOI: 10.1126/science.1115025
Source: PubMed

ABSTRACT A key process in organ homeostasis is the mobilization of stem cells out of their niches. We show through analysis of mouse models that telomere length, as well as the catalytic component of telomerase, Tert, are critical determinants in the mobilization of epidermal stem cells. Telomere shortening inhibited mobilization of stem cells out of their niche, impaired hair growth, and resulted in suppression of stem cell proliferative capacity in vitro. In contrast, Tert overexpression in the absence of changes in telomere length promoted stem cell mobilization, hair growth, and stem cell proliferation in vitro. The effects of telomeres and telomerase on stem cell biology anticipate their role in cancer and aging.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial layer of the intestine relies upon stem cells for maintaining homeostasis and regeneration. Two types of stem cells are currently defined in intestinal crypts: the cycling crypt base columnar cells and quiescent cells. Though several candidate markers and regulators of rapidly cycling and quiescent stem cells have been identified so far, the exact nature of quiescent cells is still questionable since investigations mainly focused on candidate markers rather than the label-retaining population itself. Recent results, however, have strengthened the argument for functional plasticity. Using a lineage tracing strategy label-retaining cells (LRCs) of the intestinal epithelium were marked, then followed by a pulse-chase analysis it was found that during homeostasis, LRCs were Lgr5-positive and were destined to become Paneth and neuroendocrine cells. Nevertheless, it was demonstrated that LRCs are capable of clonogenic growth by recall to the self-renewing pool of stem cells in case of epithelial injury. These new findings highlight on the hierarchical and spatial organization of intestinal epithelial homeostasis and the important plasticity of progenitors during tissue regeneration, moreover, provide a motivation for studying their role in disorders like colorectal cancer.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Werner syndrome (WS) is a rare human autosomal recessive premature aging disorder characterized by early onset of aging-associated diseases, chromosomal instability, and cancer predisposition. The function of the DNA helicase encoded by WRN, the gene responsible for WS, has been studied extensively. WRN helicase is involved in the maintenance of chromosome integrity through DNA replication, repair, and recombination by interacting with a variety of proteins associated with DNA repair and telomere maintenance. The accelerated aging associated with WS is reportedly caused by telomere dysfunction, and the underlying mechanism of the disease is yet to be elucidated. Although it was reported that the life expectancy for patients with WS has improved over the last two decades, definitive therapy for these patients has not seen much development. Severe symptoms of the disease, such as leg ulcers, cause a significant decline in the quality of life in patients with WS. Therefore, the establishment of new therapeutic strategies for the disease is of utmost importance. Induced pluripotent stem cells (iPSCs) can be established by the introduction of several pluripotency genes, including Oct3/4, Sox2, Klf4, and c-myc into differentiated cells. iPSCs have the potential to differentiate into a variety of cell types that constitute the human body, and possess infinite proliferative capacity. Recent studies have reported the generation of iPSCs from the cells of patients with WS, and they have concluded that reprogramming represses premature senescence phenotypes in these cells. In this review, we summarize the findings of WS patient-specific iPSCs (WS iPSCs) and focus on the roles of telomere and telomerase in the maintenance of these cells. Finally, we discuss the potential use of WS iPSCs for clinical applications.
    Frontiers in Genetics 01/2015; 6:10. DOI:10.3389/fgene.2015.00010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many candidate biomarkers of human ageing have been proposed in the scientific literature but in all cases their variability in cross-sectional studies is considerable, and therefore no single measurement has proven to serve a useful marker to determine, on its own, biological age. A plausible reason for this is the intrinsic multi-causal and multi-system nature of the ageing process. The recently performed MARK-AGE study was a large-scale integrated project supported by the European Commission. The major aim of this project was to conduct a population study comprising about 3300 subjects in order to identify a set of biomarkers of ageing which, as a combination of parameters with appropriate weighting, would measure biological age better than any marker in isolation. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Mechanisms of ageing and development 03/2015; 11. DOI:10.1016/j.mad.2015.03.006 · 3.51 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014