Cardiovascular responses to water drinking: does osmolality play a role?

Dept. of Medicine, Div. of Physiology, Univ. of Fribourg, Rue du Musée 5, 1700 Fribourg, Switzerland.
AJP Regulatory Integrative and Comparative Physiology (Impact Factor: 3.53). 12/2005; 289(6):R1687-92. DOI: 10.1152/ajpregu.00205.2005
Source: PubMed

ABSTRACT Water drinking activates the autonomic nervous system and induces acute hemodynamic changes. The actual stimulus for these effects is undetermined but might be related to either gastric distension or to osmotic factors. In the present study, we tested whether the cardiovascular responses to water drinking are related to water's relative hypoosmolality. Therefore, we compared the cardiovascular effects of a water drink (7.5 ml/kg body wt) with an identical volume of a physiological (0.9%) saline solution in nine healthy subjects (6 male, 3 female, aged 26 +/- 2 years), while continuously monitoring beat-to-beat blood pressure (finger plethysmography), cardiac intervals (electrocardiography), and cardiac output (thoracic impedance). Total peripheral resistance was calculated as mean blood pressure/cardiac output. Cardiac interval variability (high-frequency power) was assessed by spectral analysis as an index of cardiac vagal tone. Baroreceptor sensitivity was evaluated using the sequence technique. Drinking water, but not saline, decreased heart rate (P = 0.01) and increased total peripheral resistance (P < 0.01), high-frequency cardiac interval variability (P = 0.03), and baroreceptor sensitivity (P = 0.01). Neither water nor saline substantially increased blood pressure. These responses suggest that water drinking simultaneously increases sympathetic vasoconstrictor activity and cardiac vagal tone. That these effects were absent after drinking physiological saline indicate that the cardiovascular responses to water drinking are influenced by its hypoosmotic properties.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The vasovagal reaction has been widely studied but its anatomic and physiological nature remains uncertain. The mechanisms underlying vasovagal reaction related to blood donation are not completely understood either. Does its occurrence depend on the blood donors' physical characteristics and health variables or psychological factors? On the basis that a psychological approach considerably prevents donor reactions, the effect of fruit juice ingestion was studied in a group of 1,849 first-time high-school students as a simple strategy to avoid systemic reactions at blood donation. The reasons for the psychological effect of this hydration protocol are stressed also in light of previous physiological studies on the hemodynamic effects of water or carbohydrate drinks.
    Transfusion and Apheresis Science 08/2014; · 1.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overconsumption of sugar-sweetened beverages has been implicated in the pathogenesis of CVD. The objective of the present study was to elucidate acute haemodynamic and microcirculatory responses to the ingestion of sugary drinks made from sucrose, glucose or fructose at concentrations similar to those often found in commercial soft drinks. In a randomised cross-over study design, twelve young healthy human subjects (seven men) ingested 500 ml tap water in which was dissolved 60 g of either sucrose, glucose or fructose, or an amount of fructose equivalent to that present in sucrose (i.e. 30 g fructose). Continuous cardiovascular monitoring was performed for 30 min before and at 60 min after ingestion of sugary drinks, and measurements included beat-to-beat blood pressure (BP) and impedance cardiography. Additionally, microvascular endothelial function testing was performed after iontophoresis of acetylcholine and sodium nitroprusside using laser Doppler flowmetry. Ingestion of fructose (60 or 30 g) increased diastolic and mean BP to a greater extent than the ingestion of 60 g of either glucose or sucrose (P< 0·05). Ingestion of sucrose and glucose increased cardiac output (CO; P< 0·05), index of contractility (P< 0·05) and stroke volume (P< 0·05), but reduced total peripheral resistance (TPR; P< 0·05), which contrasts with the tendency of fructose (60 and 30 g) to increase resistance. Microvascular endothelial function did not differ in response to the ingestion of various sugary drinks. In conclusion, ingestion of fructose, but not sucrose, increases BP in healthy human subjects. Although sucrose comprises glucose and fructose, its changes in TPR and CO are more related to glucose than to fructose.
    The British journal of nutrition 04/2014; · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since Greco-Roman times bitter tastants have been used in Europe to treat digestive disorders, yet no pharmacological mechanism has been identified which can account for this practice. This study investigates whether the bitter tastants, gentian root (Gentian lutea L.) and wormwood herb (Artemisia absinthium L.), stimulate cephalic and/or gut receptors to alter postprandial haemodynamics during the gastric-phase of digestion. Normal participants ingested (1) 100mL water plus capsules containing either cellulose (placebo-control) or 1000mg of each tastant (n=14); or (2) 100mL of water flavoured with 500 or 1500mg of each tastant (a) gentian (n=12) and (b) wormwood (n=12). A single beat-to-beat cardiovascular recording was obtained for the entire session. Pre/post-ingestion contrasts with the control were analysed for (1) the encapsulated tastants, in the "10 to 15" minute post-ingestion period, and (2) the flavoured water in the "5 to 10" minute post-ingestion period. Water, the placebo-control, increased cardiac contraction force and blood pressure notwithstanding heart rate decreases. Encapsulated tastants did not further alter postprandial haemodynamics. In contrast gentian (500 and 1500mg) and wormwood (1500mg) flavoured water elicited increased peripheral vascular resistance and decreased cardiac output, primarily by reducing stroke volume rather than heart rate. Drinking 100ml water elicits a pressor effect during the gastric-phase of digestion due to increased cardiac contraction force. The addition of bitter tastants to water elicits an additional and parallel pressor effect due to increased peripheral vascular resistance; yet the extent of the post-prandial blood pressure increases are unchanged, presumably due to baroreflex buffering. The vascular response elicited by bitter tastants can be categorised as a sympathetically-mediated cephalic-phase response. A possible mechanism by which bitter tastants could positively influence digestion is altering gastric-phase postprandial haemodynamics and supporting postprandial hyperaemia.
    Journal of ethnopharmacology 05/2014; · 2.32 Impact Factor