Article

Erk Associates with and Primes GSK-3β for Its Inactivation Resulting in Upregulation of β-Catenin

Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Molecular Cell (Impact Factor: 14.46). 08/2005; 19(2):159-70. DOI: 10.1016/j.molcel.2005.06.009
Source: PubMed

ABSTRACT Beta-catenin is upregulated in many human cancers and considered to be an oncogene. Hepatocellular carcinoma (HCC) is one of the most prevalent human malignancies, and individuals who are chronic hepatitis B virus (HBV) carriers have a greater than 100-fold increased relative risk of developing HCC. Here we report a mechanism by which HBV-X protein (HBX) upregulates beta-catenin. Erk, which is activated by HBX, associates with GSK-3beta through a docking motif ((291)FKFP) of GSK-3beta and phosphorylates GSK-3beta at the (43)Thr residue, which primes GSK-3beta for its subsequent phosphorylation at Ser9 by p90RSK, resulting in inactivation of GSK-3beta and upregulation of beta-catenin. This pathway is a general signal, as it was also observed in cell lines in which Erk-primed inactivation of GSK-3beta was regulated by IGF-1, TGF-beta, and receptor tyrosine kinase HER2, and is further supported by immunohistochemical staining in different human tumors, including cancers of the liver, breast, kidney, and stomach.

1 Follower
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a conserved process that contributes to cell homeostasis. It is well known that induction mainly occurs in response to nutrient starvation, such as starvation of amino acids and insulin, and its mechanisms have been extensively characterized. However, the mechanisms behind cellular glucose deprivation-induced autophagy are as of yet poorly understood. In the present study, we determined a mechanism by which glucose deprivation induced the PKC-dependent proteasomal degradation of β-catenin, leading to autophagy. Glucose deprivation was shown to cause a sub-G1 transition and enhancement of the LC3-II protein levels, whereas β-catenin protein underwent degradation in a proteasome-dependent manner. Moreover, the inhibition of GSK3β was unable to abolish the glucose deprivation-mediated β-catenin degradation or up-regulation of LC3-II protein levels, which suggested GSK3β-independent protein degradation. Intriguingly, the inhibition of PKCα using a pharmacological inhibitor and transfection of siRNA for PKCα was observed to effectively block glucose deprivation-induced β-catenin degradation, as well as the increase in LC3-II levels, and the accumulation of a sub-G1 population. Together, our results demonstrated a molecular mechanism by which glucose deprivation can induce the GSK3β-independent protein degradation of β-catenin, leading to autophagy. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 02/2015; 290(15). DOI:10.1074/jbc.M114.606756 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lysophosphatidic acid (LPA) is a simple phospholipid with potent mitogenic effects on various cells including colon cancer cells. LPA stimulates proliferation of colon cancer cells by activation of β-catenin or Krüppel-like factor 5 (KLF5), but the functional relationship between these two transcription factors is not clear. Hence, we sought to investigate the mechanism of β-catenin activation by LPA and the role of KLF5 in the regulation of β-catenin by LPA. We found that LPA and Wnt3 additively activated the β-catenin/TCF (T cell factor) reporter activity in HCT116 cells. In addition to phosphorylating glycogen synthase kinase 3β (GSK-3β) at Ser9, LPA resulted in phosphorylation of β-catenin at Ser552 and Ser675. Mutation of Ser552 and Ser675 ablated LPA-induced β-catenin/TCF transcriptional activity. Knockdown of KLF5 significantly attenuated activation of β-catenin/TCF reporter activity by LPA but not by Wnt3. However, nuclear accumulation of β-catenin by LPA was not altered by knockdown of KLF5. β-catenin, TCF, and KLF5 were present in a 250-300kDa macro-complex, and their presence was enhanced by LPA. LPA simulated the interaction of β-catenin with TCF4, and depletion of KLF5 decreased β-catenin-TCF4 association and the transcriptional activity. In summary, LPA activates β-catenin by multiple pathways involving phosphorylation of GSK-3 and β-catenin, and enhancing β-catenin interaction with TCF4. KLF5 plays a critical role in β-catenin activation by increasing the β-catenin-TCF4 interaction. Copyright © 2015. Published by Elsevier Inc.
    Cellular Signalling 02/2015; 27(5). DOI:10.1016/j.cellsig.2015.02.005 · 4.47 Impact Factor
  • Cancer Research 01/2011; 70(8 Supplement):4020-4020. DOI:10.1158/1538-7445.AM10-4020 · 9.28 Impact Factor

Full-text (2 Sources)

Download
99 Downloads
Available from
Jun 3, 2014