Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice

Department Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
Neuron (Impact Factor: 15.98). 08/2005; 47(2):191-9. DOI: 10.1016/j.neuron.2005.06.030
Source: PubMed

ABSTRACT Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects 36 million people worldwide, but currently has no effective treatment options. One of the original hallmarks of AD are plaques comprised of beta amyloid (Aβ) and neurofibrillary tangles comprised of phosphorylated Tau protein. However, it is soluble oligomeric Aβ which is more closely correlated with cognitive decline and is therefore considered to be the neurotoxic species. Oligomeric Aβ has recently been shown to form complexes with the glycosylphosphatidylinositol (GPI)-anchored membrane protein, cellular prion protein (PrP(c)), and these complexes are believed to play an important role in the progression of AD pathogenesis. Glutamate, the major excitatory neurotransmitter is responsible for mediating learning and memory under normal physiological conditions. However, the dysregulation of glutamatergic signaling has also been implicated in a number of neurodegenerative diseases including AD. Glutamate acts via both ionotropic glutamate receptors (iGluR) and metabotropic glutamate receptors (mGluR), each of which have been implicated in AD. There is now growing evidence to suggest that mGluR5 may contribute the AD pathogenesis by acting as scaffolds for the PrP(c)/Aβ oligomer complex, enabling the propagation of neurotoxic signaling in AD. In addition, PrP(c) and Aβ oligomer signaling via NMDARs may also contribute to AD pathology. The current review overviews our current understanding of the role of PrP(c) and Aβ oligomers in regulating glutamate receptor signaling, as well as highlights the importance of understanding these signaling complexes to develop more effective therapeutic strategies to treat AD.
    Molecular Brain 12/2015; 8(1):18. DOI:10.1186/s13041-015-0107-0 · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sleep perturbations including fragmented sleep with frequent night-time awakenings and daytime naps are common in patients with Alzheimer's disease (AD), and these daily disruptions are a major factor for institutionalization. The objective of this study was to investigate if sleep-wake patterns are altered in 5XFAD mice, a well-characterized double transgenic mouse model of AD which exhibits an early onset of robust AD pathology and memory deficits. These mice have five distinct human mutations in two genes, the amyloid precursor protein (APP) and Presenilin1 (PS1) engineered into two transgenes driven by a neuron specific promoter (Thy1), and thus develop severe amyloid deposition by 4 months of age. Age matched (4-6.5 months old) male and female 5XFAD mice were monitored and compared to wild-type littermate controls for multiple sleep traits using a non-invasive, high throughput, automated piezoelectric system which detects breathing and gross body movements to characterize sleep and wake. Sleep-wake patterns were recorded continuously under baseline conditions (undisturbed) for 3 days and after sleep deprivation of 4 hours, which in mice produces a significant sleep debt and challenge to sleep homeostasis. Under baseline conditions, 5XFAD mice exhibited shorter bout lengths (14% lower values for males and 26% for females) as compared to controls (p<0.001). In females, the 5XFAD mice also showed 12% less total sleep than WT (p<0.01). Bout length reductions were greater during the night (the active phase for mice) than during the day, which does not model the human condition of disrupted sleep at night (the inactive period). However, the overall decrease in bout length suggests increased fragmentation and disruption in sleep consolidation that may be relevant to human sleep. The 5XFAD mice may serve as a useful model for testing therapeutic strategies to improve sleep consolidation in AD patients. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 01/2015; 290. DOI:10.1016/j.neuroscience.2015.01.035 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed. © 2014 S. Karger AG, Basel.
    Medical Principles and Practice 11/2014; 24(1). DOI:10.1159/000369101 · 1.11 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014