Article

Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs.

Sirna Therapeutics, Inc., 2950 Wilderness Place, Boulder, Colorado 80301, USA.
Nature Biotechnology (Impact Factor: 39.08). 08/2005; 23(8):1002-7. DOI: 10.1038/nbt1122
Source: PubMed

ABSTRACT The efficacy of lipid-encapsulated, chemically modified short interfering RNA (siRNA) targeted to hepatitis B virus (HBV) was examined in an in vivo mouse model of HBV replication. Stabilized siRNA targeted to the HBV RNA was incorporated into a specialized liposome to form a stable nucleic-acid-lipid particle (SNALP) and administered by intravenous injection into mice carrying replicating HBV. The improved efficacy of siRNA-SNALP compared to unformulated siRNA correlates with a longer half-life in plasma and liver. Three daily intravenous injections of 3 mg/kg/day reduced serum HBV DNA >1.0 log(10). The reduction in HBV DNA was specific, dose-dependent and lasted for up to 7 d after dosing. Furthermore, reductions were seen in serum HBV DNA for up to 6 weeks with weekly dosing. The advances demonstrated here, including persistence of in vivo activity, use of lower doses and reduced dosing frequency are important steps in making siRNA a clinically viable therapeutic approach.

0 Bookmarks
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune stimulation triggered by siRNAs is one of the major challenges in the development of safe RNAi-based therapeutics. Within an immunostimulatory siRNA sequence, this hurdle is commonly addressed by using ribose modifications (e.g., 2'-OMe or 2'-F), which results in decreased cytokine production. However, as immune stimulation by siRNAs is a sequence-dependent phenomenon, recognition of the nucleobases by the trigger receptor(s) is also likely. Here, we use the recently published crystal structures of Toll-like receptor 8 (TLR8) bound to small-molecule agonists to generate computational models for ribonucleotide binding by this immune receptor. Our modeling suggested that modification of either the Watson-Crick or Hoogsteen face of adenosine would disrupt nucleotide/TLR8 interactions. We employed chemical synthesis to alter either the Watson-Crick or Hoogsteen face of adenosine and evaluated the effect of these modifications in an siRNA guide strand by measuring the immunostimulatory and RNA interference properties. For the siRNA guide strand tested, we found that modifying the Watson-Crick face is generally more effective at blocking TNFα production in human peripheral blood mononuclear cells (PBMCs) than modification at the Hoogsteen edge. We also observed that modifications near the 5'-end were more effective at blocking cytokine production than those placed at the 3'-end. This work advances our understanding of how chemical modifications can be used to optimize siRNA performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    ChemBioChem 12/2014; 16(2). DOI:10.1002/cbic.201402551 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipoprotein(a) [Lp(a)] has recently been recognized as an independent risk factor for coronary heart disease. While plasma Lp(a) levels are correlated with cardiovascular risk, the mechanism by which this particle contributes to atherosclerosis is largely unknown. Although humanized transgenic mouse model has recently been described to study Lp(a) biology, non-human primates (NHP) are the only preclinical model available that allow study of the role of Lp(a) in atherosclerosis in an innate setting. We describe targeting of LPA using lipid nanoparticle formulated short interfering RNAs (siRNAs) in lean rhesus macaque monkeys. We show >90 % LPA mRNA lowering in the liver and >95 % Lp(a) plasma reduction for over 3 weeks after a single siRNA dose. Given the potency of LPA siRNAs, siRNA approach may enable chronic reduction of Lp(a) in atherosclerotic NHP and help to unmask the role for Lp(a) in the genesis and progression of atherosclerosis in man.
    Journal of Cardiovascular Translational Research 01/2015; DOI:10.1007/s12265-014-9605-1 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody-siRNA complexes provide a possible solution. However, initial reports of antibody-siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody-siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 12/2014; 43(2). DOI:10.1093/nar/gku1362 · 8.81 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
Jun 3, 2014