Article

Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection.

NIAID, Laboratory of Parasitic Diseases, Bldg. 4, Rm. 126, Center Dr. MSC 0425, Bethesda, MD 20892-0425, USA.
Infection and Immunity (Impact Factor: 4.16). 09/2005; 73(8):4714-22. DOI: 10.1128/IAI.73.8.4714-4722.2005
Source: PubMed

ABSTRACT Numerous experimental vaccines have been developed with the goal of generating long-term cell-mediated immunity to the obligate intracellular parasite Leishmania major, yet inoculation with live, wild-type L. major remains the only successful vaccine in humans. We examined the expression of immunity at the site of secondary, low-dose challenge in the ear dermis to determine the kinetics of parasite clearance and the early events associated with the protection conferred by vaccination with live L. major organisms in C57BL/6 mice. Particular attention was given to the route of vaccination. We observed that the rapidity, strength, and durability of the memory response following subcutaneous vaccination with live parasites in the footpad are even greater than previously appreciated. Antigen-specific gamma interferon (IFN-gamma)-producing T cells infiltrate the secondary site by 1.5 weeks, and viable parasites are cleared as early as 2.5 weeks following rechallenge, followed by a rapid drop in IFN-gamma(+) CD4(+) cell numbers in the site. In comparison, intradermal vaccination with live parasites in the ear generates immunity that is delayed in effector cell recruitment to the rechallenge site and in the clearance of parasites from the site. This compromised immunity was associated with a rapid recruitment of interleukin-10 (IL-10)-producing CD4(+) T cells to the rechallenge site. Treatment with anti-IL-10-receptor or anti-CD25 antibody enhanced early parasite clearance in ear-vaccinated mice, indicating that chronic infection in the skin generates a population of regulatory cells capable of influencing the level of resistance to reinfection. A delicate balance of effector and regulatory T cells may be required to optimize the potency and durability of vaccines against Leishmaniasis and other intracellular pathogens.

0 Followers
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice.
    PLoS Neglected Tropical Diseases 10/2014; 8(10):e3197. DOI:10.1371/journal.pntd.0003197 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The leishmaniases are protozoal diseases that severely affect large populations in tropical and subtropical regions. There are only limited treatment options and preventative measures. Vaccines will be important for prevention, control and elimination of leishmaniasis, and could reduce the transmission and burden of disease in endemic populations. We report the development of a DNA vaccine against leishmaniasis that induced T cell-based immunity and is a candidate for clinical trials. The vaccine antigens were selected as conserved in various Leishmania species, different endemic regions, and over time. They were tested with T cells from individuals cured of leishmaniasis, and shown to be immunogenic and to induce CD4(+) and CD8(+) T cell responses in genetically diverse human populations of different endemic regions. The vaccine proved protective in a rodent model of infection. Thus, the immunogenicity of candidate vaccine antigens in human populations of endemic regions, as well as proof of principle for induction of specific immune responses and protection against Leishmania infection in mice, provides a viable strategy for T cell vaccine development.
    Science translational medicine 04/2014; 6(234):234ra56. DOI:10.1126/scitranslmed.3008222 · 14.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Site-specific differences in skin response to pathogens and in the course of cutaneous inflammatory diseases are well appreciated. The composition and localization of cutaneous leukocytes has been studied extensively using histology and flow cytometry. However, the precise three-dimensional (3D) distribution of distinct immune cell subsets within skin at different body sites requires visualization of intact living skin. We used intravital multiphoton microscopy in transgenic reporter mice in combination with quantitative flow cytometry to generate a 3D immune cell atlas of mouse skin. The 3D location of innate and adaptive immune cells and site-specific differences in the densities of macrophages, T cells and mast cells at four defined sites (ear, back, footpad, tail) is presented. The combinatorial approach further demonstrates an as yet unreported age-dependent expansion of dermal gamma-delta T cells. Localization of dermal immune cells relative to anatomical structures was also determined. While dendritic cells were dispersed homogeneously within the dermis, mast cells preferentially localized to the perivascular space. Finally, we show the functional relevance of site-specific mast cell disparities using the passive cutaneous anaphylaxis model. These approaches are applicable to assessing immune cell variations and potential functional consequences in the setting of infection as well as the pathogenesis of inflammatory skin conditions.Journal of Investigative Dermatology accepted article preview online, 09 July 2014; doi:10.1038/jid.2014.289.
    Journal of Investigative Dermatology 07/2014; DOI:10.1038/jid.2014.289 · 6.37 Impact Factor

Full-text (2 Sources)

Download
58 Downloads
Available from
May 28, 2014