Article

Why dietary restriction substantially increases longevity in animal models but won't in humans.

Life Sciences Core Curriculum Program, UCLA, Los Angeles, CA 90095-1606, USA.
Ageing Research Reviews (Impact Factor: 7.63). 09/2005; 4(3):339-50. DOI: 10.1016/j.arr.2005.06.001
Source: PubMed

ABSTRACT Caloric restriction (CR) extends maximum longevity and slows aging in mice, rats, and numerous non-mammalian taxa. The apparent generality of the longevity-increasing effects of CR has prompted speculation that similar results could be obtained in humans. Longevity, however, is not a trait that exists in a vacuum; it evolves as part of a life history and the physiological mechanisms that determine longevity are undoubtedly complex. Longevity is intertwined with reproduction and there is a cost to reproduction. The impact of this cost on longevity can be age-independent or age-dependent. Given the complexity of the physiology underlying reproductive costs and other mechanisms affecting life history, it is difficult to construct a simple model for the relationship between the particulars of the physiology involved and patterns of mortality. Consequently, we develop a hypothesis-neutral model describing the relationship between diet and longevity. Applying this general model to the special case of human longevity and diet indicates that the benefits of caloric restriction in humans would be quantitatively small.

1 Follower
 · 
65 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids.
    The British journal of nutrition 02/2014; 111(4):735-46. DOI:10.1017/S0007114513002948 · 3.34 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While solutions to major scientific and medical problems are never perfect or complete, it is still reasonable to delineate cases where both have been essentially solved. For example, Darwin's theory of natural selection provides a successful solution to the problem of biological adaptation, while the germ theory of infection solved the scientific problem of contagious disease. Likewise in the context of medicine, we have effectively solved the problem of contagious disease, reducing it to a minor cause of death and disability for almost everyone in countries with advanced medicine and adequate resources. Evolutionary biologists claim to have solved the scientific problem of aging: we explain it theoretically using Hamilton's forces of natural selection; in experimental evolution we readily manipulate the onset, rate, and eventual cessation of aging by manipulating these forces. In this article, we turn to the technological challenge of solving the medical problem of aging. While we feel that the broad outlines of such a solution are clear enough starting from the evolutionary solution to the scientific problem of aging, we do not claim that we can give a complete or exhaustive plan for medically solving the problem of aging. But we are confident that biology and medicine will effectively solve the problem of aging within the next 50 years, providing Hamiltonian lifestyle changes, tissue repair, and genomic technological opportunities are fully exploited in public health practices, in medical practice, and in medical research, respectively.
    Current Aging Science 05/2014; DOI:10.2174/1874609807666140521110314