Article

Therapeutic Electromagnetic Field (TEMF) and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis.

Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
Cancer Cell International (Impact Factor: 2.09). 07/2005; 5:23. DOI: 10.1186/1475-2867-5-23
Source: PubMed

ABSTRACT The effects of a rectified semi-sinewave signal (15 mT amplitude, 120 pulses per second, EMF Therapeutics, Inc.) (TEMF) alone and in combination with gamma irradiation (IR) therapy in nude mice bearing a human MDA MB231 breast cancer xenograft were tested. Green fluorescence protein transfected cancer cells were injected into the mammary fat pad of young female mice. Six weeks later, mice were randomly divided into four treatment groups: untreated controls; 10 minute daily TEMF; 200 cGy of IR every other day (total 800 cGy); IR plus daily TEMF. Some mice in each group were euthanized 24 hours after the end of IR. TEMF treatment continued for 3 additional weeks. Tumor sections were stained for: endothelial cells with CD31 and PAS or hypoxia inducible factor 1alpha (HIF).
Most tumors <35 mm3 were white but tumors >35 mm3 were pink and had a vascularized capsule. The cortex within 100 microns of the capsule had little vascularization. Blood vessels, capillaries, and endothelial pseudopods were found at >100 microns from the capsule (subcortex). Tumors >35 mm3 treated with IR 24 hours previously or with TEMF had decreased blood vessels in the subcortex and more endothelial pseudopods projecting into hypoxic, HIF positive areas than tumors from the control group. Mice that received either IR or TEMF had significantly fewer lung metastatic sites and slower tumor growth than did untreated mice. No harmful side effects were attributed to TEMF.
TEMF therapy provided a safe means for retarding tumor vascularization, growth and metastasis.

0 Bookmarks
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
    International Journal of Molecular Sciences 01/2013; 14(7):14974-95. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of new blood vessels is an essential therapeutic target in many diseases such as cancer, ischemic diseases, and chronic inflammation. In this regard, extremely low-frequency (ELF) electromagnetic fields (EMFs) seem able to inhibit vessel growth when used in a specific window of amplitude. To investigate the mechanism of anti-angiogenic action of ELF-EMFs we tested the effect of a sinusoidal magnetic field (MF) of 2 mT intensity and frequency of 50 Hz on endothelial cell models HUVEC and MS-1 measuring cell status and proliferation, motility and tubule formation ability. MS-1 cells when injected in mice determined a rapid tumor-like growth that was significantly reduced in mice inoculated with MF-exposed cells. In particular, histological analysis of tumors derived from mice inoculated with MF-exposed MS-1 cells indicated a reduction of hemangioma size, of blood-filled spaces, and in hemorrhage. In parallel, in vitro proliferation of MS-1 treated with MF was significantly inhibited. We also found that the MF-exposure down-regulated the process of proliferation, migration and formation of tubule-like structures in HUVECs. Using western blotting and immunofluorescence analysis, we collected data about the possible influence of MF on the signalling pathway activated by the vascular endothelial growth factor (VEGF). In particular, MF exposure significantly reduced the expression and activation levels of VEGFR2, suggesting a direct or indirect influence of MF on VEGF receptors placed on cellular membrane. In conclusion MF reduced, in vitro and in vivo, the ability of endothelial cells to form new vessels, most probably affecting VEGF signal transduction pathway that was less responsive to activation. These findings could not only explain the mechanism of anti-angiogenic action exerted by MFs, but also promote the possible development of new therapeutic applications for treatment of those diseases where excessive angiogenesis is involved.
    PLoS ONE 01/2013; 8(11):e79309. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common drawback of many anticancer therapies is non-specificity in action of killing. We investigated the potential of ultra-low intensity and frequency pulsed electromagnetic fields (PEMFs) to kill breast cancer cells. Our criteria to accept this technology as a potentially valid therapeutic approach were: 1) cytotoxicity to breast cancer cells and; 2) that the designed fields proved innocuous to healthy cell classes that would be exposed to the PEMFs during clinical treatment. MCF7 breast cancer cells and their normal counterparts, MCF10 cells, were exposed to PEMFs and cytotoxic indices measured in order to design PEMF paradigms that best kill breast cancer cells. The PEMF parameters tested were: 1) frequencies ranging from 20 to 50 Hz; 2) intensities ranging from 2 mT to 5 mT and; 3) exposure durations ranging from 30 to 90 minutes per day for up to three days to determine the optimum parameters for selective cancer cell killing. We observed a discrete window of vulnerability of MCF7 cells to PEMFs of 20 Hz frequency, 3 mT magnitude and exposure duration of 60 minutes per day. The cell damage accrued in response to PEMFs increased with time and gained significance after three days of consecutive daily exposure. By contrast, the PEMFs parameters determined to be most cytotoxic to breast cancer MCF-7 cells were not damaging to normal MCF-10 cells. Based on our data it appears that PEMF-based anticancer strategies may represent a new therapeutic approach to treat breast cancer without affecting normal tissues in a manner that is non-invasive and can be potentially combined with existing anti-cancer treatments.
    PLoS ONE 01/2013; 8(9):e72944. · 3.53 Impact Factor

Full-text (2 Sources)

View
1 Download
Available from