Optimality and evolutionary tuning of the expression level of a protein.

Department of Molecular Cell Biology and Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel.
Nature (Impact Factor: 42.35). 08/2005; 436(7050):588-92. DOI: 10.1038/nature03842
Source: PubMed

ABSTRACT Different proteins have different expression levels. It is unclear to what extent these expression levels are optimized to their environment. Evolutionary theories suggest that protein expression levels maximize fitness, but the fitness as a function of protein level has seldom been directly measured. To address this, we studied the lac system of Escherichia coli, which allows the cell to use the sugar lactose for growth. We experimentally measured the growth burden due to production and maintenance of the Lac proteins (cost), as well as the growth advantage (benefit) conferred by the Lac proteins when lactose is present. The fitness function, given by the difference between the benefit and the cost, predicts that for each lactose environment there exists an optimal Lac expression level that maximizes growth rate. We then performed serial dilution evolution experiments at different lactose concentrations. In a few hundred generations, cells evolved to reach the predicted optimal expression levels. Thus, protein expression from the lac operon seems to be a solution of a cost-benefit optimization problem, and can be rapidly tuned by evolution to function optimally in new environments.

Download full-text


Available from: Uri Alon, Jun 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic systems are governed by a compromise between metabolic benefit and enzyme cost. This hypothesis and its consequences can be studied by kinetic models in which enzyme profiles are chosen by optimality principles. In enzyme-optimal states, active enzymes must provide benefits: a higher enzyme level must provide a metabolic benefit to justify the additional enzyme cost. This entails general relations between metabolic fluxes, reaction elasticities, and enzyme costs, the laws of metabolic economics. The laws can be formulated using economic potentials and loads, state variables that quantify how metabolites, reactions, and enzymes affect the metabolic performance in a steady state. Economic balance equations link them to fluxes, reaction elasticities, and enzyme levels locally in the network. Economically feasible fluxes must be free of futile cycles and must lead from lower to higher economic potentials, just like thermodynamics makes them lead from higher to lower chemical potentials. Metabolic economics provides algebraic conditions for economical fluxes, which are independent of the underlying kinetic models. It justifies and extends the principle of minimal fluxes and shows how to construct kinetic models in enzyme-optimal states, where all enzymes have a positive influence on the metabolic performance.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic fluxes are governed by physical and economic principles. Stationarity constrains them to a subspace in flux space and thermodynamics makes them lead from higher to lower chemical potentials. At the same time, fluxes in cells represent a compromise between metabolic performance and enzyme cost. To capture this, some flux prediction methods penalise larger fluxes by heuristic cost terms. Economic flux analysis, in contrast, postulates a balance between enzyme costs and metabolic benefits as a necessary condition for fluxes to be realised by kinetic models with optimal enzyme levels. The constraints are formulated using economic potentials, state variables that capture the enzyme labour embodied in metabolites. Generally, fluxes must lead from lower to higher economic potentials. This principle, which resembles thermodynamic constraints, can complement stationarity and thermodynamic constraints in flux analysis. Futile modes, which would be incompatible with economic potentials, are defined algebraically and can be systematically removed from flux distributions. Enzymes that participate in potential futile modes are likely targets of regulation. Economic flux analysis can predict high-yield and low-yield strategies, and captures preemptive expression, multi-objective optimisation, and flux distributions across several cells living in symbiosis. Inspired by labour value theories in economics, it justifies and extends the principle of minimal fluxes and provides an intuitive framework to model the complex interplay of fluxes, metabolic control, and enzyme costs in cells.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Leonelli, 2007; Levins, 2006). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger's practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger's historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple representational means is an essential part of the dynamic of knowledge generation. It is because of-rather than in spite of-the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production.
    Studies in History and Philosophy of Science Part C Studies in History and Philosophy of Biological and Biomedical Sciences 04/2013; DOI:10.1016/j.shpsc.2013.03.012