Article

Morphological and functional alterations of the cochlea in apolipoprotein E gene deficient mice.

Division of Allergy and Immunology, Departments of Medicine, Molecular Sciences and Otolaryngology and Neuroscience Institute, College of Medicine, VA Medical Center, Memphis, TN 38104, USA.
Hearing Research (Impact Factor: 2.85). 11/2005; 208(1-2):54-67. DOI: 10.1016/j.heares.2005.05.010
Source: PubMed

ABSTRACT The relationship between hyperlipidemia and sensorineural hearing loss remains obscure. In this study, we elucidate for the first time the cochlear morphological and auditory alterations and their relationships with hyperlipidemia, atherosclerosis, and endothelial dysfunction in apolipoprotein-E knockout (ApoE-KO) mice. Ten-week-old ApoE-KO mice were fed either atherosclerotic diet (1.25% cholesterol) or normal diet. Wild type mice (C57BL/6J) served as normal controls. Fourteen weeks later, marked hyperlipidemia, atherosclerosis, endothelial dysfunction, and hearing impairment, especially in the high frequencies, had developed in ApoE-KO mice as compared with C57BL/6J mice (P<0.001). A high positive correlation between hearing loss and the extent of atherosclerosis and plasma total cholesterol levels was found. Hearing loss, especially at high frequencies, was detected in all ApoE-KO mice. Hair cell loss mainly at the base turn, thickening of vascular intima, and lumen stenosis of the spiral modiolar artery (SMA) in cochlea were also found; these histological changes were exacerbated by the atherosclerotic diet. Furthermore, endothelial nitric oxide synthase (eNOS) in aortic wall and cochlea was distinctly reduced in ApoE-KO mice. These results demonstrate that hyperlipidemia and atherosclerosis can induce alterations in cochlear morphology and function. The stenosis of SMA, which may cause cochlear ischemia and hypoxia, endothelial dysfunction, and low eNOS activity, may contribute to hearing loss.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick disease, type C1 (NPC1) is a rare lysosomal lipidosis that is most often the result of biallelic mutations in NPC1, and is characterized by a fatal neurological degeneration. The pathophysiology is complex, and the natural history of the disease is poorly understood. Recent findings from patients with NPC1 and hearing loss suggest that multiple steps along the auditory pathway are affected. The current study was undertaken to determine the auditory phenotype in the Npc1 (nih) mutant mouse model, to extend analyses to histologic evaluation of the inner ear, and to compare our findings to those reported from human patients. Auditory testing revealed a progressive high-frequency hearing loss in Npc1 (-/-) mice that is present as early as postnatal day 20 (P20), well before the onset of overt neurological symptoms, with evidence of abnormalities involving the cochlea, auditory nerve, and brainstem auditory centers. Distortion product otoacoustic emission amplitude and auditory brainstem response latency data provided evidence for a disruption in maturational development of the auditory system in Npc1 (-/-) mice. Anatomical study demonstrated accumulation of lysosomes in neurons, hair cells, and supporting cells of the inner ear in P30 Npc1 (-/-) mice, as well as increased numbers of inclusion bodies, myelin figures, and swollen nerve endings in older (P50-P70) mutant animals. These findings add unique perspective to the pathophysiology of NPC disease and suggest that hearing loss is an early and sensitive marker of disease progression.
    Journal of the Association for Research in Otolaryngology 05/2014; · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity-related disorders are closely associated with the development of age-related hearing impairment (ARHI). Adiponectin (APN) exerts protective effects against obesity-related conditions including endothelial dysfunction and atherosclerosis. Here, we investigated the impact of APN on ARHI. APN-knockout (APN-KO) mice developed exacerbation of hearing impairment, particularly in the high frequency range, compared with wild-type (WT) mice. Supplementation with APN prevented the hearing impairment in APN-KO mice. At 2 months of age, the cochlear blood flow and capillary density of the stria vascularis (SV) were significantly reduced in APN-KO mice as compared with WT mice. APN-KO mice also showed a significant increase in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the organ of Corti in the cochlea at 2 months of age. At the age of 6 months, hair cells were lost at the organ of Corti in APN-KO mice. In cultured auditory HEI-OC1 cells, APN reduced apoptotic activity under hypoxic conditions. Clinically, plasma APN levels were significantly lower in humans with ARHI. Multiple logistic regression analysis identified APN as a significant and independent predictor of ARHI. Our observations indicate that APN has an important role in preventing ARHI.
    Cell Death & Disease 01/2014; 5:e1189. · 5.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR-145 and miR-143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier. In cultured proliferative rat vascular smooth muscle cells (VSMCs) in vitro and in diseased rat and mouse arteries in vivo, we have identified that the impairment of pri-miR-145 into pre-miR-145 is the critical step related to the downregulation of miR-145, in which the PI3-kinase/Akt/p53 pathway is involved. We further identified that the flank sequences of pri-miR-145 are the critical structural components responsible for the aberrant miR-145 expression. Switching of the flank sequence of downregulated miR-145 and miR-143 to the flank sequence of miR-31 confers resistance to their downregulation. The genetically engineered miR-145 (smart miR-145) restored the downregulated miR-145 in proliferative rat VSMCs and in rat carotid arteries with balloon injury and mouse atherosclerotic aortas and demonstrated much better therapeutic effects on the abnormal growth of VSMCs, expression of its target gene, KLF5 expression, VSMC marker gene expression, and vascular neointimal growth. The flank sequences of miR-145 and miR-143 play a critical role in their aberrant expression in VSMCs and vascular walls. The genetically engineered "smart" miRNAs based on their flank sequences may have broadly therapeutic applications for many vascular diseases.
    Journal of the American Heart Association. 01/2013; 2(6):e000407.