Reconsidering the definition of a dose-volume histogram.

Physics in Medicine and Biology (Impact Factor: 2.7). 07/2005; 50(11):L17-19. DOI: 10.1088/0031-9155/50/11/L01
Source: PubMed

ABSTRACT The full text of this letter is given in the PDF file below.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compensator-based proton therapy of lung cancer using an un-gated treatment while allowing the patient to breathe freely requires a compensator design that ensures tumor coverage throughout respiration. Our investigation had two purposes: one is to investigate the dosimetric impact when a composite compensator correction is applied, or is not, and the other one is to evaluate the significance of using different respiratory phases as the reference computed tomography (CT) for treatment planning dose calculations. A 4D-CT-based phantom study and a real patient treatment planning study were performed. A 3D MIP dataset generated over all phases of the acquired 4D-CT scans was adopted to design the field-specific composite aperture and compensator. In the phantom study, the MIP-based compensator design plan named plan D was compared to the other three plans, in which average intensity projection (AIP) images in conjunction with the composite target volume contour copied from the MIP images were used. Relative electron densities within the target envelope were assigned either to original values from the AIP image dataset (plan A) or to predetermined values, 0.8 (plan B) and 0.9 (plan C). In the patient study, the dosimetric impact of a compensator design based on the MIP images (plan ITV(MIP)) was compared to designs based on end-of-inhale (EOI) (plan ITV(EOI)) and middle-of-exhale (MOE) CT images (plan ITV(MOE)). The dose distributions were recalculated for each phase. Throughout the ten phases, it shows that D(GTV)(min) changed slightly from 86% to 89% (SD = 0.9%) of prescribed dose (PD) in the MIP plan, while varying greatly from 10% to 79% (SD = 26.7%) in plan A, 17% to 73% (SD = 22.5%) in plan B and 53% to 73% (SD = 6.8%) in plan C. The same trend was observed for D(GTV)(mean) and V95 with less amplitude. In the MIP-based plan ITV(MIP), D(GTV)(mean) was almost identically equal to 95% in each phase (SD = 0.5%). The patient study verified that the MIP approach increased the minimum value of D99 of the clinical target volume (CTV) by 58.8% compared to plan ITV(EOI) and 12.9% compared to plan ITV(MOE). Minimum values of D99 were 37.60%, 83.50% and 96.40% for plan ITV(EOI), plan ITV(MOE) and plan ITV(MIP), respectively. Standard deviations of D99 were significantly decreased (SD = 0.5%) in the MIP plan as compared to plan ITV(EOI) (SD = 18.9%) or plan ITV(MOE) (SD = 4.0%). These studies demonstrate that the use of MIP images to design the patient-specific composite compensators provide superior and consistent tumor coverage throughout the entire respiratory cycle whilst maintaining a low average normal lung dose. The additional benefit of the MIP-based design approach is that the dose calculation can be implemented on any single phase as long as it uses the aperture and compensator optimized from the MIP images. This also reduces the requirement for contouring on all breathing phases down to just one.
    Physics in Medicine and Biology 06/2008; 53(12):3343-64. · 2.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental evidence supports an association between heterogeneity in tumor perfusion and response to chemotherapy/radiotherapy, disease progression and malignancy. Therefore, changes in tumor perfusion may be used to assess early effects of tumor treatment. However, evaluating changes in tumor perfusion during treatment is complicated by extensive changes in tumor type, size, shape and appearance. Therefore, this study assesses the regional heterogeneity of tumors by dynamic contrast-enhanced MRI (DCE-MRI) and evaluates changes in response to isolated limb perfusion (ILP) with tumor necrosis factor alpha and melphalan. Data were acquired in an experimental cancer model, using a macromolecular contrast medium, albumin-(Gd-DTPA)45. Small fragments of BN 175 (a soft-tissue sarcoma) were implanted in eight brown Norway rats. MRI of five drug-treated and three sham-treated rats was performed at baseline and 1 h after ILP intervention. Properly co-registered baseline and follow-up DCE-MRI were used to estimate the volume transfer constant (K(trans) ) pharmacokinetic maps. The regional heterogeneity was estimated in 16 tumor sectors and presented in cumulative map-volume histograms. On average, ILP-treated tumors showed a decrease in regional heterogeneity on the histograms. This study shows that heterogenic changes in regional tumor perfusion, estimated using DCE-MRI pharmacokinetic maps, can be measured and used to assess the short-term effects of a potentially curative treatment on the tumor microvasculature in an experimental soft-tissue sarcoma model. Copyright © 2013 John Wiley & Sons, Ltd.
    Contrast Media & Molecular Imaging 07/2013; 8(4):340-9. · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate incidental doses to benign lung tissue for patients with minimally moving lung lesions treated with respiratory gating. Seventeen lung patient plans were studied retrospectively. Tumor motion was less than 5 mm in all cases. For each patient, mid-ventilation (MidVen) and mid-inhalation (MidInh) breathing phases were reconstructed. The MidInh phase was centered on the end-of-inhale (EOI) phase within a 30% gating window. Planning target volumes, heart, and spinal cord were delineated on the MidVen phase and transferred to the MidInh phase. Lungs were contoured separately on each phase. Intensity-modulated radiotherapy plans were generated on the MidVen phases. The plans were transferred to the MidInh phase, and doses were recomputed. The evaluation metric was based on dose indices, volume indices, generalized equivalent uniform doses, and mass indices for targets and critical structures. Statistical tests were used to establish the significance of the differences between the reference (MidVen) and compared (MidInh) dose distributions. Statistical tests demonstrated that the indices evaluated for targets, cord, and heart differed by within 2.3%. The index differences in the lungs, however, are in excess of 6%, indicating the potentially achievable lung sparing and/or dose escalation. Respiratory gating is a clinical option for patients with minimally moving lung lesions treated at EOI. Gating will be more beneficial for larger tumors, since dose escalation in those cases will result in a larger increase in the tumor control probability.
    International journal of radiation oncology, biology, physics 05/2010; 77(1):285-91. · 4.59 Impact Factor


Available from