Article

Addiction: A disease of learning and memory

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
American Journal of Psychiatry (Impact Factor: 13.56). 09/2005; 162(8):1414-22. DOI: 10.1176/appi.ajp.162.8.1414
Source: PubMed

ABSTRACT If neurobiology is ultimately to contribute to the development of successful treatments for drug addiction, researchers must discover the molecular mechanisms by which drug-seeking behaviors are consolidated into compulsive use, the mechanisms that underlie the long persistence of relapse risk, and the mechanisms by which drug-associated cues come to control behavior. Evidence at the molecular, cellular, systems, behavioral, and computational levels of analysis is converging to suggest the view that addiction represents a pathological usurpation of the neural mechanisms of learning and memory that under normal circumstances serve to shape survival behaviors related to the pursuit of rewards and the cues that predict them. The author summarizes the converging evidence in this area and highlights key questions that remain.

0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches-from basic neurobiological approaches to human studies-might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.
    Frontiers in Neuroscience 03/2015; 9:86. DOI:10.3389/fnins.2015.00086
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. The current review (a) describes the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotype and improve the prediction of onset and recovery of these disorders. Copyright © 2015. Published by Elsevier B.V.
    International journal of psychophysiology: official journal of the International Organization of Psychophysiology 02/2015; DOI:10.1016/j.ijpsycho.2015.01.011 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders.
    Frontiers in Systems Neuroscience 12/2014; 8:230. DOI:10.3389/fnsys.2014.00230

Preview (2 Sources)

Download
4 Downloads