Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis.

Center for Musculoskeletal Research, Department of Orthopeadics, University of Rochester, Rochester, New York 14642, USA.
Journal of Bone and Mineral Research (Impact Factor: 6.59). 10/2005; 20(9):1624-36. DOI: 10.1359/JBMR.050516
Source: PubMed

ABSTRACT Runx proteins mediate skeletal development. We studied the regulation of Runx1 during chondrocyte differentiation by real-time RT-PCR and its function during chondrogenesis using overexpression and RNA interference. Runx1 induces mesenchymal stem cell commitment to the early stages of chondrogenesis.
Runx1 and Runx2 are co-expressed in limb bud cell condensations that undergo both cartilage and bone differentiation during murine development. However, the cooperative and/or compensatory effects these factors exert on skeletal formation have yet to be elucidated.
Runx1/Cbfa2 and Runx2/Cbfa1 were examined at different stages of embryonic development by immunohistochemistry. In vitro studies used mouse embryonic limb bud cells and assessed Runx expressions by immunohistochemistry and real-time RT-PCR in the presence and absence of TGFbeta and BMP2. Runx1 was overexpressed in mesenchymal cell progenitors using retroviral infection.
Immunohistochemistry showed that Runx1 and Runx2 are co-expressed in undifferentiated mesenchyme, had similar levels in chondrocytes undergoing transition from proliferation to hypertrophy, and that there was primarily Runx2 expression in hypertrophic chondrocytes. Overall, the expression of Runx1 remained significantly higher than Runx2 mRNA levels during early limb bud cell maturation. Treatment of limb bud micromass cultures with BMP2 resulted in early induction of both Runx1 and Runx2. However, upregulation of Runx2 by BMP2 was sustained, whereas Runx1 decreased in later time-points when type X collagen was induced. Although TGFbeta potently inhibits Runx2 and type X collagen, it induces type II collagen mRNA and mildly but significantly inhibits Runx1 isoforms in the early stages of chondrogenesis. Virus-mediated overexpression of Runx1 in mouse embryonic mesenchymal cells resulted in a potent induction of the early chondrocyte differentiation markers but not the hypertrophy marker, type X collagen. Knockdown or Runx1 potently inhibits type II collagen, alkaline phosphatase, and Runx2 and has a late inhibitory effect on type X collagen.
These findings show a distinct and sustained role for Runx proteins in chondrogenesis and subsequent chondrocyte maturation. Runx1 is highly expressed during chondrogenesis in comparison with Runx2, and Runx1 gain of functions stimulated this process. Thus, the Runx genes are uniquely expressed and have distinct roles during skeletal development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While Notch signaling plays a critical role in the regulation of cartilage formation, its downstream targets are unknown. To address this we performed gain and losses of function experiments and demonstrate that Notch inhibition of chondrogenesis acts via up-regulation of the transcription factor Twist1. Upon Notch activation, murine limb bud mesenchymal progenitor cells in micromass culture displayed an inhibition of chondrogenesis. Twist1 was found to be exclusively expressed in mesenchymal progenitor cells at the onset stage of chondrogenesis during Notch activation. Inhibition of Notch signaling in these cells significantly reduced protein expression of Twist1. Furthermore, the inhibition effect of NICD1 on MPC chondrogenesis was markedly reduced by knocking down of Twist1. Constitutively active Notch signaling significantly enhanced Twist1 promoter activity; whereas mutation studies indicated that a putative NICD/RBPjK binding element in the promoter region is required for the Notch-responsiveness of the Twist1 promoter. Finally, chromatin immunoprecipitation assays further confirmed that the Notch intracellular domain influences Twist1 by directly binding to the Twist1 promoter. These data provide a novel insight into understanding the molecular mechanisms behind Notch inhibition of the onset of chondrogenesis. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Molecular and Cellular Endocrinology 01/2015; 403. DOI:10.1016/j.mce.2015.01.015 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule -we named Kartogenin (KGN)- that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFβ superfamily members, particularly TFGβ1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFβ1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFβ1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFβ and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFβ signaling, working in addition to and/or in concert with the filamin A/CBFβ/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies.
    Developmental Biology 09/2014; DOI:10.1016/j.ydbio.2014.09.011 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myofibroblasts are a key cell type in wound repair, cardiovascular disease, and fibrosis and in the tumor-promoting microenvironment. The high accumulation of myofibroblasts in reactive stroma is predictive of the rate of cancer progression in many different tumors, yet the cell types of origin and the mechanisms that regulate proliferation and differentiation are unknown. We report here, for the first time to our knowledge, the characterization of normal human prostate-derived mesenchymal stem cells (MSCs) and the TGF-β1-regulated pathways that modulate MSC proliferation and myofibroblast differentiation. Human prostate MSCs combined with prostate cancer cells expressing TGF-β1 resulted in commitment to myofibroblasts. TGF-β1-regulated runt-related transcription factor 1 (RUNX1) was required for cell cycle progression and proliferation of progenitors. RUNX1 also inhibited, yet did not block, differentiation. Knockdown of RUNX1 in prostate or bone marrow-derived MSCs resulted in cell cycle arrest, attenuated proliferation, and constitutive differentiation to myofibroblasts. These data show that RUNX1 is a key transcription factor for MSC proliferation and cell fate commitment in myofibroblast differentiation. This work also shows that the normal human prostate gland contains tissue-derived MSCs that exhibit multilineage differentiation similar to bone marrow-derived MSCs. Targeting RUNX1 pathways may represent a therapeutic approach to affect myofibroblast proliferation and biology in multiple disease states.
    Proceedings of the National Academy of Sciences 10/2014; DOI:10.1073/pnas.1407097111 · 9.81 Impact Factor


1 Download