Article

Runx1/AML1/Cbfa2 Mediates Onset of Mesenchymal Cell Differentiation Toward Chondrogenesis

Center for Musculoskeletal Research, Department of Orthopeadics, University of Rochester, Rochester, New York 14642, USA.
Journal of Bone and Mineral Research (Impact Factor: 6.59). 10/2005; 20(9):1624-36. DOI: 10.1359/JBMR.050516
Source: PubMed

ABSTRACT Runx proteins mediate skeletal development. We studied the regulation of Runx1 during chondrocyte differentiation by real-time RT-PCR and its function during chondrogenesis using overexpression and RNA interference. Runx1 induces mesenchymal stem cell commitment to the early stages of chondrogenesis.
Runx1 and Runx2 are co-expressed in limb bud cell condensations that undergo both cartilage and bone differentiation during murine development. However, the cooperative and/or compensatory effects these factors exert on skeletal formation have yet to be elucidated.
Runx1/Cbfa2 and Runx2/Cbfa1 were examined at different stages of embryonic development by immunohistochemistry. In vitro studies used mouse embryonic limb bud cells and assessed Runx expressions by immunohistochemistry and real-time RT-PCR in the presence and absence of TGFbeta and BMP2. Runx1 was overexpressed in mesenchymal cell progenitors using retroviral infection.
Immunohistochemistry showed that Runx1 and Runx2 are co-expressed in undifferentiated mesenchyme, had similar levels in chondrocytes undergoing transition from proliferation to hypertrophy, and that there was primarily Runx2 expression in hypertrophic chondrocytes. Overall, the expression of Runx1 remained significantly higher than Runx2 mRNA levels during early limb bud cell maturation. Treatment of limb bud micromass cultures with BMP2 resulted in early induction of both Runx1 and Runx2. However, upregulation of Runx2 by BMP2 was sustained, whereas Runx1 decreased in later time-points when type X collagen was induced. Although TGFbeta potently inhibits Runx2 and type X collagen, it induces type II collagen mRNA and mildly but significantly inhibits Runx1 isoforms in the early stages of chondrogenesis. Virus-mediated overexpression of Runx1 in mouse embryonic mesenchymal cells resulted in a potent induction of the early chondrocyte differentiation markers but not the hypertrophy marker, type X collagen. Knockdown or Runx1 potently inhibits type II collagen, alkaline phosphatase, and Runx2 and has a late inhibitory effect on type X collagen.
These findings show a distinct and sustained role for Runx proteins in chondrogenesis and subsequent chondrocyte maturation. Runx1 is highly expressed during chondrogenesis in comparison with Runx2, and Runx1 gain of functions stimulated this process. Thus, the Runx genes are uniquely expressed and have distinct roles during skeletal development.

0 Followers
 · 
92 Views
  • Source
    • "Co-variation in murine molar rows 601 Renaud et al. 2002). Indeed some mutations have a differential impact on the upper and lower molars (e.g., Wang et al. 2005) suggesting that despite a strong and conserved integration with other teeth, decoupling might occur. How such mosaic evolution may occur despite robust integration during evolution is an ongoing challenge for evo-devo studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Morphological integration corresponds to interdependency between characters that can arise from several causes. Proximal causes of integration include that different phenotypic features may share common genetic sets and/or interact during their development. Ultimate causes may be the prolonged effect of selection favoring integration of functionally interacting characters, achieved by the molding of these proximal causes. Strong and direct interactions among successive teeth of a molar row are predicted by genetic and developmental evidences. Functional constraints related to occlusion, however, should have selected more strongly for a morphological integration of occluding teeth and a corresponding evolution of the underlying developmental and genetic pathways. To investigate how these predictions match the patterns of phenotypic integration, we studied the co-variation among the six molars of the murine molar row, focusing on two populations of house mice (Mus musculus domesticus) and wood mice (Apodemus sylvaticus). The size and shape of the three upper and lower molars were quantified and compared. Our results evidenced similar patterns in both species, size being more integrated than shape among all the teeth, and both size and shape co-varying strongly between adjacent teeth, but also between occluding teeth. Strong co-variation within each molar row is in agreement with developmental models showing a cascade influence of the first molar on the subsequent molars. In contrast, the strong co-variation between molars of the occluding tooth rows confirms that functional constraints molded patterns of integration and probably the underlying developmental pathways despite the low level of direct developmental interactions occurring among molar rows. These patterns of co-variation are furthermore conserved between the house mouse and the wood mouse that diverged >10 Ma, suggesting that they may constitute long-running constraints to the diversification of the murine rodent dentition.
    Evolution & Development 09/2009; 11(5):590-602. DOI:10.1111/j.1525-142X.2009.00365.x · 2.68 Impact Factor
  • Source
    • "Alcian blue staining of LD or HDM cultures of MEMM cells from either GD 12 or 13 or 14 embryos, was performed as described by Wang et al. (Wang et al., 2005). Briefly, cells were rinsed with PBS and fixed in 10% formaldehyde in PBS for 20 minutes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors of differentiation (Id) proteins are helix-loop-helix (HLH) transcription factors lacking a DNA-binding domain. Id proteins modulate cell proliferation, apoptosis and differentiation in embryonic/fetal tissue. Perturbation of any of these processes in cells of the developing orofacial region results in orofacial anomalies. Chondrogenesis, a process integral to normal orofacial ontogenesis, is known to be modulated, in part, by Id proteins. In the present study, the mRNA and protein expression patterns of Id1, Id2, Id3 and Id4 were examined in developing murine orofacial tissue in vivo, as well as in murine embryonic maxillary mesenchymal cells in vitro. The functional role of Ids during chondrogenesis was also explored in vitro. Results reveal that cells derived from developing murine orofacial tissue (1) express Id1, Id2, Id3 and Id4 mRNAs and proteins on each of gestational days 12-14, (2) express all four Id proteins in a developmentally regulated manner, (3) undergo chondrogenesis and express genes encoding various chondrogenic marker proteins (e.g. Runx2, Type X collagen, Sox9) when cultured under micromass conditions and (4) can have their chondrogenic potential regulated via alteration of Id protein function through overexpression of a basic HLH factor. In summary, results from the current report reveal for the first time the expression of all four Id proteins in cells derived from developing murine orofacial tissue, and demonstrate a functional role for the Ids in regulating the ability of these cells to undergo chondrogenesis.
    Differentiation 05/2009; 77(5):462-72. DOI:10.1016/j.diff.2009.02.002 · 2.84 Impact Factor
  • Source
    • "Other categories characterizing mesenchymal lineages included genes for transcription factors involved in early mesodermal lineages, chondrogenesis, osteogenesis, hemangiogenesis, adipogenesis and stromagenesis (Table 2a). Another major pathway involved in cluster A was TGF-b (transforming growth factor-b) signalling (TGFB2, FST, BMP1, BMP2, BMP3), which is known to contribute to mesenchymal phenotypes and chondrogenesis (Wang et al., 2005; Zavadil and Bottinger, 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Wilms tumours (WTs) have two distinct types of histology with or without ectopic mesenchymal elements, suggesting that WTs arise from either the mesenchymal or epithelial nephrogenic lineages. Regardless of the presence or absence of CTNNB1 mutations, nuclear accumulation of beta-catenin is often observed in WTs with ectopic mesenchymal elements. Here, we addressed the relationship between the WNT-signalling pathway and lineage in WTs by examining CTNNB1 and WT1 mutations, nuclear accumulation of beta-catenin, tumour histology and gene expression profiles. In addition, we screened for mutations in WTX, which has been proposed to be a negative regulator of the canonical WNT-signalling pathway. Unsupervised clustering analysis identified two classes of tumours: mesenchymal lineage WNT-dependent tumours, and epithelial lineage WNT-independent tumours. In contrast to the mesenchymal lineage specificity of CTNNB1 mutations, WTX mutations were surprisingly observed in both lineages. WTX-mutant WTs with ectopic mesenchymal elements had nuclear accumulation of beta-catenin, upregulation of WNT target genes and an association with CTNNB1 mutations in exon 7 or 8. However, epithelial lineage WTs with WTX mutations had no indications of active WNT signalling, suggesting that the involvement of WTX in the WNT-signalling pathway may be lineage dependent, and that WTX may have an alternative function to its role in the canonical WNT-signalling pathway.
    Oncogene 02/2009; 28(8-8):1063-75. DOI:10.1038/onc.2008.455 · 8.56 Impact Factor
Show more

Preview

Download
1 Download