The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men

Division of Endocrinology and Metabolism, Department of Internal Medicine, Sacred Heart Hospital, Hallym University, Pyungchon-dong, Dongan-gu, Anyang-city, Kyungki-do, Chunchon, Korea.
Clinical Endocrinology (Impact Factor: 3.35). 09/2005; 63(2):131-8. DOI: 10.1111/j.1365-2265.2005.02312.x
Source: PubMed

ABSTRACT Body weight is a significant predictor of bone mass. Hormonal factors such as sex hormones, insulin, leptin and adiponectin are thought to play a role in the mechanisms controlling the association of body weight and fat mass with bone mass. However, contradictory results have been reported for the association between serum adipocytokines and bone mineral density (BMD). We therefore examined whether the serum adipocytokine and ghrelin levels, markers of fat metabolism, are associated with BMD in male adults.
For 80 male adults (average age 54.5 +/- 6.4 years; average body mass index (BMI) 24.4 +/- 2.5 kg/m2), the correlations between serum resistin, leptin, adiponectin and ghrelin levels with BMD were investigated.
Among the adipocytokines, serum resistin levels were negatively correlated with lumbar spine BMD (r = -0.237, P = 0.05). After adjustment was made for age and BMI, log-transformed serum leptin showed a significant negative correlation with lumbar spine BMD, which was not seen on bivariate analysis (r = -0.237, P = 0.039). Femoral neck BMD was marginally associated only with serum adiponectin levels (r = -0.226, P = 0.062). In multiple regression analyses, among the adipokines, only resistin was a significant determinant of lumbar spine BMD, although the variance was small (R2 = 0.256). Serum ghrelin levels were not correlated with the BMD of either body site.
Serum resistin level showed a significant negative correlation with lumbar spine BMD, although the variance was small. Further studies are needed to elucidate the role of adipocytokines in bone metabolism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that changes in the production of adipose tissue hormones in obese postmenopausal women might affect their bone status. The aim of this study was to determine whether obese postmenopausal women exhibited any relationship between serum levels of LP, ADIPO, RES, VISF, APE and bone metabolism markers (OC and CTx), OPG, sRANKL, the OPG/sRANKL ratio as well as BMD. 80 postmenopausal women (60 obese and 20 healthy) underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) at lumbar spine L2-L4. Serum levels of selected adipose tissue hormones, OC, CTx, OPG and its soluble ligand, sRANKL, were assessed by ELISA. Obese postmenopausal women demonstrated a significant increase in body mass, BMI and WHR associated with significant increases in LP and RES levels, a decrease in ADIPO concentration, suppression of OC, CTx, OPG and sRANKL and an increase in the OPG/sRANKL ratio and BMD. BMI correlated positively with BMD, LP, RES, OPG and the OPG/sRANKL ratio, whereas in the case of ADIPO, OC, CTx, sRANKL the relationship was negative. WHR was positively correlated with the OPG/sRANKL ratio, and negatively with ADIPO and APE. A positive correlation was found between BMD and LP, APE and the OPG/sRANKL ratio, while the correlation between BMD and ADIPO, CTx, sRANKL was negative. Significant positive correlations were also revealed between OC, CTx and ADIPO; OPG and ADIPO; sRANKL and ADIPO, RES; the OPG/sRANKL ratio and LP. OC correlated negatively with LP, RES, VISF, APE; CTx with LP, VISF, APE; OPG with LP; sRANKL with LP and APE; the OPG/sRANKL ratio with VISF. ADIPO was an independent predictor of OC, OPG and sRANKL, while LP turned out to be an independent predictor of CTx, OPG, sRANKL and the OPG/sRANKL ratio. Obesity in postmenopausal women can lead to changes in BMD, circulating levels of bone markers, OPG, sRANKL and/or the OPG/sRANKL ratio; these changes are associated with alterations in the concentrations of adipose tissue hormones under investigation. The relationships between bone status indicators and adipose tissue hormones, especially LP and ADIPO, seem to suggest that changes in these hormones observed in obese postmenopausal women might have a protective effect on bone tissue, most probably via a shift in the OPG/sRANKL ratio towards a functional excess of OPG. (Endokrynol Pol 2014; 65 (6): 438-448).
    Endokrynologia Polska 01/2014; 65(6):438-48. DOI:10.5603/EP.2014.0061 · 1.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact.
    International Journal of Endocrinology 01/2014; 2014:690783. DOI:10.1155/2014/690783 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among women with obesity, those with the lowest bone density have the highest fracture risk. The types of fractures include any fracture, fragility-type fractures (vertebra, hip, upper arm, forearm, and lower leg), hand and foot fractures, osteoporotic, and other fracture types. Recent reports have contradicted the traditional view that obesity is protective against fracture. In this study, we have evaluated the relationship between fracture history and bone mineral density (BMD) in subjects with obesity. Fracture risk was assessed in 400 obese women in relation to body mass index (BMI), BMD, and clinical and laboratory variables. Subjects (mean age, 43.8 years; SD, 11.1 years) had a mean BMI of 46.0 kg/m(2) (SD, 7.4 kg/m(2)). There were a total of 178 self-reported fractures in 87 individuals (21.8 % of subjects); fragility-type fractures (hip, vertebra, proximal humerus, distal forearm, and ankle/lower leg) were present in 58 (14.5 %). There were higher proportions of women in the lowest femoral neck BMD quintile who had any fracture history (41.3 vs. 17.2 %, p < 0.0001), any fragility-type fractures (26.7 vs. 11.7 %, p = 0.0009), hand and foot fractures (16.0 vs. 5.5 %, p = 0.002), other fracture types (5.3 vs. 1.2 %, p = 0.02), and osteoporotic fractures (8.0 vs. 1.2 %, p < 0.0001) compared to the remaining population. The odds ratio for any fracture was 0.63 (95 % CI, 0.49-0.89; p = 0.0003) per SD increase in BMD and was 4.3 (95 % CI, 1.9-9.4; p = 0.003) in the lowest BMD quintile compared to the highest quintile. No clinical or biochemical predictors of fracture risk were identified apart from BMD. Women with obesity who have the lowest BMD values, despite these being almost normal, have an elevated risk of fracture compared to those with higher BMD.
    Osteoporosis International 08/2014; 26(1). DOI:10.1007/s00198-014-2833-z · 4.17 Impact Factor


Available from