Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload

Biozentrum, Department of Cell Biology, University of Basel, and Friedrich Miescher Institute, Basel, Switzerland.
Journal of Clinical Investigation (Impact Factor: 13.77). 09/2005; 115(8):2180-6. DOI: 10.1172/JCI25683
Source: PubMed

ABSTRACT Iron homeostasis plays a critical role in many physiological processes, notably synthesis of heme proteins. Dietary iron sensing and inflammation converge in the control of iron absorption and retention by regulating the expression of hepcidin, a regulator of the iron exporter ferroportin. Human mutations in the glycosylphosphatidylinositol-anchored protein hemojuvelin (HJV; also known as RGMc and HFE2) cause juvenile hemochromatosis, a severe iron overload disease, but the way in which HJV intersects with the iron regulatory network has been unclear. Here we show that, within the liver, mouse Hjv is selectively expressed by periportal hepatocytes and also that Hjv-mutant mice exhibit iron overload as well as a dramatic decrease in hepcidin expression. Our findings define a key role for Hjv in dietary iron sensing and also reveal that cytokine-induced inflammation regulates hepcidin expression through an Hjv-independent pathway.

Download full-text


Available from: Vera Niederkofler, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ferritin plays important roles in iron metabolism and controls iron absorption in the intestine. The ferritin subunits ferritin heavy chain (Fth1) and ferritin light chain (Ftl1) are tightly regulated at both the transcriptional and post-transcriptional levels. However, mechanisms of maintaining stable, basal expression of Fth1 are poorly understood. Here, we show that global deletion of Mbd5 in mice induces an iron overload phenotype. Liver and serum iron levels in Mbd5−/− mice were 3·2-fold and 1·5-fold higher respectively, than wild-type littermates; moreover, serum ferritin was increased >5-fold in the Mbd5−/− mice. Mbd5 encodes a member of the methyl-CpG binding domain family; however, the precise function of this gene is poorly understood. Here, we found that intestinal Fth1 mRNA levels were decreased in Mbd5−/− mice. Loss of Fth1 expression in the intestine could lead to iron over-absorption. Furthermore, deleting Mbd5 specifically in the intestine resulted in a phenotype similar to that of conditional deletion of Fth1 mice. An Fth1 promoter-report luciferase assay indicated that overexpression of Mbd5 enhanced Fth1 transcription in a dose-dependent manner. Histone H4 acetylation of the Fth1 promoter was reduced in the intestine of Mbd5−/− mice and further analysis showed that histone acetyltransferase KAT2A was essential for MBD5-induced Fth1 transcription.
    British Journal of Haematology 04/2014; 166(2). DOI:10.1111/bjh.12863 · 4.96 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb(-/-) mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb(-/-) mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 12/2011; 31(50):18391-400. DOI:10.1523/JNEUROSCI.4550-11.2011 · 6.75 Impact Factor