Article

Neuronal Ca2+/calmodulin-dependent protein kinase II - Discovery, progress in a quarter of a century, and perspective: Implication for learning and memory

Department of Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8585, Japan.
Biological & Pharmaceutical Bulletin (Impact Factor: 1.78). 09/2005; 28(8):1342-54. DOI: 10.1248/bpb.28.1342
Source: PubMed

ABSTRACT Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. A good candidate for the storage mechanism is Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in brain. Although it has been about a quarter of a century since the finding, CaM kinase II has been of the major interest in the region of brain science. It plays a multifunctional role in many intracellular events, and the expression of the enzyme is carefully regulated in brain regions and during brain development. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase have provided insight into the molecular basis of nerve functions, especially learning and memory, and indicate one direction for studies in the field of neuroscience. This review presents the molecular structure, properties and functions of CaM kinase II, as a major component of neurons, based mainly developed on findings made in our laboratory.

4 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Except in species that have undergone evolved loss, paired lobed centers referred to as "mushroom bodies" occur across invertebrate phyla [1-5]. Unresolved is the question of whether these centers, which support learning and memory in insects, correspond genealogically or whether their neuronal organization suggests convergent evolution. Here, anatomical and immunohistological observations demonstrate that across phyla, mushroom body-like centers share a neuroanatomical ground pattern and proteins required for memory formation. Paired lobed or dome-like neuropils characterize the first brain segment (protocerebrum) of mandibulate and chelicerate arthropods and the nonganglionic brains of polychaete annelids, polyclad planarians, and nemerteans. Structural and cladistic analyses resolve an ancestral ground pattern common to all investigated taxa: chemosensory afferents supplying thousands of intrinsic neurons, the parallel processes of which establish orthogonal networks with feedback loops, modulatory inputs, and efferents. Shared ground patterns and their selective labeling with antisera against proteins required for normal mushroom body function in Drosophila are indicative of genealogical correspondence and thus an ancestral presence predating arthropod and lophotrochozoan origins. Implications of this are considered in the context of mushroom body function and early ecologies of ancestral bilaterians. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Biology 12/2014; 25(1). DOI:10.1016/j.cub.2014.10.049 · 9.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Moderate hypoxia has been implicated in the development of delirium. One mechanism may be an increase of Dopamine (DA) and Serotonin (5-HT) levels. Our previous studies indicated that hypoxia increased levels of both neurotransmitters (NT) and that nimodipine (NIMO) administered immediately after hypoxia preserved short term memory. We tested the hypothesis that these observations may be related to a NIMO dependent reduction of hypoxia in-duced NT elevation. Methods: Following IACUC approval, In Vivo microvoltammetry sensors (BRODERICK PROBE ®) were implanted in the dorsal striatum of Na Pentobarbital anesthetized adult Sprague-Dawley rats. Extracellular NT levels were recorded for 15m during the establishment of baseline values in room air (N=6). Three sequential thirty-minute periods under hypoxia (10% O2) followed. First: under hypoxia alone; second after i.p. injection of NIMO (0.1mg/kg); and third following i.p. injection of NIMO (1.0mg/kg). Measurements were analyzed with ANOVA with post hoc Tukeys test. P-values less than 0.05 were considered significant. Results: NT levels are expressed as percentages of baseline values. Treatment values were averaged over each sequential thirty-minute period following each intervention. Moderate hypoxia resulted in the increase of DA to 172% (SEM=18) and 5-HT to 68% (SEM=4) above baseline. Under continuing hypoxia, NIMO (0.1mg/kg) caused DA levels to fall to 112% (SEM=14) and 5-HT to 13% (SEM=5) above baseline. NIMO (1.0mg/kg) caused DA levels to fall to 34% (SEM=6) above baseline and 5-HT to 20% (SEM=2) below baseline. Conclusion: Moderate hypoxia increased levels of DA and 5-HT in the striatum of rats. NIMO administration during on-going hypoxia caused the levels of both neurotransmitters to fall towards baseline. The results may have implications for understanding and treating cognitive decline due to hypoxia.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying genetic interactions in data obtained from genome-wide association studies (GWASs) can help in understanding the genetic basis of complex diseases. The large number of single nucleotide polymorphisms (SNPs) in GWASs however makes the identification of genetic interactions computationally challenging. We developed the Bayesian Combinatorial Method (BCM) that can identify pairs of SNPs that in combination have high statistical association with disease.
    BioData Mining 12/2014; 7(1-1). DOI:10.1186/s13040-014-0035-z · 1.54 Impact Factor

Preview

Download
3 Downloads
Available from