Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule.

Center for Advanced Research in Biotechnology, WM Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA.
The EMBO Journal (Impact Factor: 9.82). 10/2005; 24(17):2968-79. DOI:10.1038/sj.emboj.7600771
Source: PubMed

ABSTRACT Multiple sclerosis is mediated by T-cell responses to central nervous system antigens such as myelin basic protein (MBP). To investigate self-peptide/major histocompatibility complex (MHC) recognition and T-cell receptor (TCR) degeneracy, we determined the crystal structure, at 2.8 A resolution, of an autoimmune TCR (3A6) bound to an MBP self-peptide and the multiple sclerosis-associated MHC class II molecule, human leukocyte antigen (HLA)-DR2a. The complex reveals that 3A6 primarily recognizes the N-terminal portion of MBP, in contrast with antimicrobial and alloreactive TCRs, which focus on the peptide center. Moreover, this binding mode, which may be frequent among autoimmune TCRs, is compatible with a wide range of orientation angles of TCR to peptide/MHC. The interface is characterized by a scarcity of hydrogen bonds between TCR and peptide, and TCR-induced conformational changes in MBP/HLA-DR2a, which likely explain the low observed affinity. Degeneracy of 3A6, manifested by recognition of superagonist peptides bearing substitutions at nearly all TCR-contacting positions, results from the few specific interactions between 3A6 and MBP, allowing optimization of interface complementarity through variations in the peptide.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: HLA-I molecules can present long peptides, yet the mechanisms by which TCRs recognise featured pHLA-I landscapes are unclear. We compared the binding modes of three distinct human TCRs, CA5, SB27 and SB47, complexed with a super-bulged viral peptide (LPEPLPQGQLTAY) restricted by HLA-B*35:08. The CA5 and SB27 TCRs engaged HLA-B*35:08LPEP similarly, straddling the central region of the peptide but making limited contacts with HLA-B*35:08. Remarkably, the CA5 TCR did not contact the α1-helix of HLA-B*35:08. Differences in the CDR3β loop between the CA5 and SB27 TCRs caused altered fine specificities. Surprisingly, the SB47 TCR engaged HLA-B*35:08LPEP using a completely distinct binding mechanism, namely bypassing the bulged peptide and making extensive contacts with the extreme N-terminal end of HLA-B*35:08. This docking footprint included HLA-I residues not observed previously as TCR contact sites. The three TCRs exhibited differing patterns of alloreactivity towards closely related or distinct HLA-I allotypes. Thus, the human T-cell repertoire comprises a range of TCRs that can interact with bulged pHLA-I epitopes using unpredictable strategies, including the adoption of atypical footprints on the MHC-I.
    Journal of Biological Chemistry 04/2013; · 4.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.
    Nature Immunology 07/2013; · 26.20 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Self-reactive CD4 T cells are thought to have a central role in the pathogenesis of many chronic inflammatory human diseases. Microbial peptides can activate self-reactive T cells, but the structural basis for such crossreactivity is not well understood. The Hy.1B11 T cell receptor (TCR) originates from a patient with multiple sclerosis and recognizes the self-antigen myelin basic protein. Here we report the structural mechanism of TCR crossreactivity with two distinct peptides from human pathogens. The structures show that a single TCR residue (CDR3α F95) makes the majority of contacts with the self-peptide and both microbial peptides (66.7-80.6%) due to a highly tilted TCR-binding topology on the peptide-MHC surface. Further, a neighbouring residue located on the same TCR loop (CDR3α E98) forms an energetically critical interaction with the MHC molecule. These data show how binding by a self-reactive TCR favors crossreactivity between self and microbial antigens.
    Nature Communications 10/2013; 4:2623. · 10.02 Impact Factor


Available from