Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome.

Laboratoire d'Explorations Fonctionnelles Endocriniennes, Inserm U515 et UPMC Paris 6, Hôpital Armand Trousseau, AP-HP, 26 avenue Arnold Netter, 75012 Paris, France.
Nature Genetics (Impact Factor: 29.65). 10/2005; 37(9):1003-7. DOI: 10.1038/ng1629
Source: PubMed

ABSTRACT Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the associations between the mRNA levels of H19 in term placenta and risk of macrosomia.
    Archives of Medical Science 06/2014; 10(3):525-30. · 1.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Opposite phenotypic and behavioural traits associated with copy number variation and disruptions to imprinted genes with parent-of-origin effects have led to the hypothesis that autism and schizophrenia share molecular risk factors and pathogenic mechanisms, but a direct phenotypic comparison of how their risks covary has not been attempted. Here, we use health registry data collected on Denmark's roughly 5 million residents between 1978 and 2009 to detect opposing risks of autism and schizophrenia depending on normal variation (mean ± 1 s.d.) in adjusted birth size, which we use as a proxy for diametric gene-dosage variation in utero. Above-average-sized babies (weight, 3691-4090 g; length, 52.8-54.3 cm) had significantly higher risk for autism spectrum (AS) and significantly lower risk for schizophrenia spectrum (SS) disorders. By contrast, below-average-sized babies (2891-3290 g; 49.7-51.2 cm) had significantly lower risk for AS and significantly higher risk for SS disorders. This is the first study directly comparing autism and schizophrenia risks in the same population, and provides the first large-scale empirical support for the hypothesis that diametric gene-dosage effects contribute to these disorders. Only the kinship theory of genomic imprinting predicts the opposing risk patterns that we discovered, suggesting that molecular research on mental disease risk would benefit from considering evolutionary theory.
    Proceedings of the Royal Society B: Biological Sciences 11/2014; 281(1794). · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The testis-enriched genes ZNF230/Znf230 are located on human chromosome 11p15/mouse chromosome 7 near conserved imprinting control regions. Typical CpG islands (CGIs) extend from the promoter to the first exon in each of these genes. To investigate the correlation between the methylation status of the above CGIs and the expression patterns of the two genes, we performed bisulfite genomic sequencing of genomic DNA from human and mouse tissues and cells. The results showed that the CGIs of ZNF230/Znf230 were completely unmethylated in all selected tissues and cells, regardless of the expression levels of the two genes. Further experiments using Znf230-second-exon-knockout mice to investigate the imprinting status of Znf230 showed that its expression was not affected by genomic imprinting. However, an in vitro methylation assay illustrated that the methylation of these CpG sites could repress the expression of the luciferase reporter gene. Furthermore, chromatin immunoprecipitation with anti-Specificity protein 1 (Sp1) antibody showed that Sp1 could bind to the CGIs in the ZNF230/Znf230 gene promoter. Thus, we propose that the unmethylated state of ZNF230/Znf230 CGIs may be a prerequisite for their expression but not sufficient for their abundant expression in the testis, and that Sp1 binding may be one factor involved in preserving the methylation-free state of ZNF230/Znf230 CGIs.
    Genes & genomics 04/2013; 36(2):163-169. · 0.57 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014