Notriptyline for smoking cessation: A review

Departments of Psychiatry, Psychology, and Family Practice, University of Vermont, Burlington, VT 05401, USA.
Nicotine & Tobacco Research (Impact Factor: 3.3). 09/2005; 7(4):491-9. DOI: 10.1080/14622200500185298
Source: PubMed


This article reviews the efficacy of nortriptyline for smoking cessation based on a meta-analysis of the Cochrane Library. Six placebo-controlled trials have shown nortriptyline (75-100 mg) doubles quit rates (OR = 2.1). Between 4% and 12% of smokers dropped out because of adverse events, but no serious adverse events occurred. The efficacy of nortriptyline did not appear to be related to its antidepressant actions. Nortriptyline is an efficacious aid to smoking cessation with a magnitude of effect similar to that for bupropion and nicotine replacement therapies. Whether nortriptyline produces serious side effects at these doses in healthy, nondepressed smokers remains unclear because it has been tested in only 500 smokers. The finding that nortriptyline and bupropion are effective for smoking cessation but that selective serotonin-reuptake inhibitors are not suggests that dopaminergic or adrenergic, but not serotonergic, activity is important for cessation efficacy. Until further studies can verify a low incidence of significant adverse events, nortriptyline should be a second-line treatment for smoking cessation.

4 Reads
  • Source
    • "Although the U.S. Food and Drug Administration (FDA) has not approved nortriptyline for use in smoking cessation, the Tobacco Use and Dependence Clinical Practice Guideline Panel of the U.S. Public Health Service recommends it as a second-choice medicine for this use [4]. Six placebo controlled trials have shown that nortriptyline doubles the quit rate as compared to placebo and the efficacy did not appear to be related to its antidepressant action [46]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotine dependence is a major cause of mortality and morbidity all over the world. Various medications have been tried to treat nicotine dependence including nicotine replacement therapy, bupropion, and varenicline. A newer venture to nicotine dependence treatment is a nicotine vaccine which is yet to get footsteps in common practice. The present review assimilates various pharmacotherapeutic measures to address nicotine dependence. However, it is to be noted that psychological interventions, when combined with pharmacotherapy, offer the greatest benefits to the patients.
    12/2013; 2013(3):278392. DOI:10.1155/2013/278392
  • Source
    • "The antidepressant nortriptyline, a relatively selective NET inhibitor, has been reported to increase smoking cessation rates [14] [15], providing evidence for the involvement of NE systems in nicotine addiction. Reboxetine, another antidepressant and NET inhibitor [16] [17], inhibits nAChRs mediating nicotine-evoked [ 3 H]NE release from hippocampus, but not nAChRs mediating nicotine-evoked [ 3 H]DA release from striatum [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Smoking is a significant health concern and strongly correlated with clinical depression. Depression is associated with decreased extracellular NE concentrations in brain. Smokers may be self-medicating and alleviating their depression through nicotine stimulated norepinephrine (NE) release. Several antidepressants inhibit NE transporter (NET) function, thereby augmenting extracellular NE concentrations. Antidepressants, such as bupropion, also inhibit nicotinic receptor (nAChR) function. The current study determined if a recently discovered novel nAChR antagonist, N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), inhibits nicotine-evoked NE release from superfused rat hippocampal slices. Previous studies determined that bPiDDB potently (IC(50)=2 nM) inhibits nicotine-evoked striatal [(3)H]dopamine (DA) release in vitro, nicotine-evoked DA release in nucleus accumbens in vivo, and nicotine self-administration in rats. In the current study, nicotine stimulated [(3)H]NE release from rat hippocampal slices (EC(50)=50 microM). bPiDDB inhibited (IC(50)=430 nM; I(max)=90%) [(3)H]NE release evoked by 30 microM nicotine. For comparison, the nonselective nAChR antagonist, mecamylamine, and the alpha7 antagonist, methyllycaconitine, also inhibited nicotine-evoked [(3)H]NE release (IC(50)=31 and 275 nM, respectively; I(max)=91% and 72%, respectively). Inhibition by bPiDDB and mecamylamine was not overcome by increasing nicotine concentrations; Schild regression slope was different from unity, consistent with allosteric inhibition. Thus, bPiDDB was 200-fold more potent inhibiting nAChRs mediating nicotine-evoked [(3)H]DA release from striatum than those mediating nicotine-evoked [(3)H]NE release from hippocampus.
    Biochemical pharmacology 08/2009; 78(7):889-97. DOI:10.1016/j.bcp.2009.07.010 · 5.01 Impact Factor
  • Source
Show more