Alternative life histories shape brain gene expression profiles in males of the same population. Proc R Soc B

Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.05). 09/2005; 272(1573):1655-62. DOI: 10.1098/rspb.2005.3125
Source: PubMed


Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative 'sneaker' tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the 'default' life cycle, may actually result from an active inhibition of development into a sneaker.

Download full-text


Available from: Hans A Hofmann, Oct 03, 2015
15 Reads
  • Source
    • "The neural basis of social status has been studied in the brain in Atlantic salmon (Salmo salar) where the plasticity in the development of alternative male phenotypes has been investigated [21,22]. Aubin-Horth and coauthors [21] discovered that 15% of the analyzed genes were differentially expressed between brains of male morphs, but the investigations into alternative mating tactics in the Atlantic salmon were carried out on precocious males and lack the analysis of the large mature male. Alternative male mating strategies are also studied in cichlid fish species, due to their extreme diversity and the facility to be handled and kept in the laboratory (see [4] and references cited therein), whereas the non-dominant male is not reproductively active [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Social dominance is important for the reproductive success of males in many species. In the black-faced blenny (Tripterygion delaisi) during the reproductive season, some males change color and invest in nest making and defending a territory, whereas others do not change color and 'sneak' reproductions when females lay their eggs. Using RNAseq, we profiled differential gene expression between the brains of territorial males, sneaker males, and females to study the molecular signatures of male dimorphism. We found that more genes were differentially expressed between the two male phenotypes than between males and females, suggesting that during the reproductive period phenotypic plasticity is a more important factor in differential gene expression than sexual dimorphism. The territorial male overexpresses genes related to synaptic plasticity and the sneaker male overexpresses genes involved in differentiation and development. Previously suggested candidate genes for social dominance in the context of alternative mating strategies seem to be predominantly species-specific. We present a list of novel genes which are differentially expressed in Tripterygion delaisi. This is the first genome-wide study for a molecular non-model species in the context of alternative mating strategies and provides essential information for further studies investigating the molecular basis of social dominance.
    BMC Genomics 02/2014; 15(1):167. DOI:10.1186/1471-2164-15-167 · 3.99 Impact Factor
  • Source
    • "2007; O'Malley and Banks 2008b), and reproductive strategy in Atlantic salmon (Aubin-Horth et al. 2005), the mechanisms by which photic information is perceived, interpreted, and then used to regulate many physiological seasonal events in salmon are unknown. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.
    Evolutionary Applications 12/2013; 6(8). DOI:10.1111/eva.12095 · 3.90 Impact Factor
  • Source
    • "[19]), the yeast Saccharomyces cerevisiae (e.g. [20]), killifish [14-16,21], Atlantic salmon [22,23], mice (e.g. [18,24]), and maize [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. Results We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. Conclusion Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
    BMC Genomics 04/2013; 14(1):228. DOI:10.1186/1471-2164-14-228 · 3.99 Impact Factor
Show more