Article

Defective binding of transcriptional repressor ZEB via DNA methylation contributes to increased constitutive levels of p73 in Fanconi anemia cells.

Unidad de Genética Molecular, Hospital Universitario Marques de Valdecilla, Edificio Escuela Universitaria de Enfermeria, Servicio Cantabro de Salud, Av. Valdecilla s/n, 39008 Santander, Spain.
FEBS Letters (Impact Factor: 3.58). 09/2005; 579(21):4610-4. DOI: 10.1016/j.febslet.2005.07.026
Source: PubMed

ABSTRACT Little is known about the molecular mediators of the Fanconi anemia (FA) pathway involved in the machinery that maintains genomic integrity. Here, we report that the levels of p73 and its target genes, are increased in cells derived from FA patients belonging to complementation group A (FA-A). Moreover, functional correction of FA-A cells by gene transfer reduces the expression of p73. We also demonstrate that DNA methylation contributes to increased levels of p73 in FA-A cells by hampering the binding of the transcriptional repressor ZEB to an intronic regulatory region of the p73 gene. Together, our data may help explain the susceptibility of these cells to DNA damaging agents.

0 Bookmarks
 · 
43 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: FA (Fanconi anaemia) is a rare hereditary disorder characterized by congenital malformations, progressive bone marrow failure and an extraordinary predisposition to develop cancer. At present, 15 genes have been related to this condition and mutations of them have also been found in different types of cancer. Bone marrow failure threatens the life of FA patients during the first decade of their life, but the mechanisms underlying this process are not completely understood. In the present study we investigate a possible imbalance between the expression of pro- and anti-apoptotic proteins as a cause for the hypersensitivity of FANCC (FA, complementation group C)-deficient cells to genotoxic stress. We found a BIK (Bcl-2 interacting killer) over-expression in lymphoblastoid cell lines derived from FA-C patients when compared with their phenotypically corrected counterparts. This overexpression has a transcriptional basis since the regulatory region of the gene shows higher activity in FANCC-deficient cells. We demonstrate the involvement of BIK in the sensitivity of FA-C lymphoblasts to interstrand DNA cross-linking agents as it is induced by these drugs and interference of its expression in these cells preserves their viability and reduces apoptosis. We investigate the mechanism of BIK overexpression in FANCC-deficient cells by analysing the activity of many different signalling pathways in these cells. Finally, we provide evidence of a previously undescribed indirect epigenetic regulation of BIK in FA-C lymphoblasts mediated by ΔNp73, an isoform of p73 lacking its transactivation domain that activates BIK through a proximal element in its promoter.
    Biochemical Journal 08/2012; 448(1):153-63. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TP73 is a member of the TP53 family, whose deregulated expression has been reported in a wide variety of cancers and linked to patients' outcome. The fact that TP73 encodes a complex number of isoforms (TAp73 and ΔTAp73) with opposing functions and the cross-talk with other members of the family (TP53 and TP63) make it difficult to determine its clinical relevance. Here, we review the molecular mechanisms driving TAp73 and ΔTAp73 expression and how these variants inhibit or promote carcinogenesis. We also highlight the intricate interplay between TP53 family members. In addition, we comment on current pharmacological approaches targeting the TP73 pathway and those affecting the TAp73/ΔTAp73 ratio. Finally, we discuss the current data available in the literature that provide evidence on the role of TP73 variants in predicting prognosis. To date, most of the studies that evaluate the status levels of TP73 isoforms have been based on limited-size series. Despite this limitation, these publications highlight the correlation between high levels of the oncogenic forms and failure to respond to chemotherapy and/or shorter survival. Finally, we emphasize the need for studies to evaluate the significance of combining the deregulation of various members of the TP53 family in order to define patient outcome or their responsiveness to specific therapies. © 2013 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 08/2013; · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation provides a mechanism by which environmental factors can control insulin sensitivity in obesity. Here, we assessed DNA methylation in skeletal muscle from obese people before and after Roux-en-Y gastric bypass (RYGB). Obesity was associated with altered expression of a subset of genes enriched in metabolic process and mitochondrial function. After weight loss, the expression of the majority of the identified genes was normalized to levels observed in normal-weight, healthy controls. Among the 14 metabolic genes analyzed, promoter methylation of 11 genes was normalized to levels observed in the normal-weight, healthy subjects. Using bisulfite sequencing, we show that promoter methylation of PGC-1α and PDK4 is altered with obesity and restored to nonobese levels after RYGB-induced weight loss. A genome-wide DNA methylation analysis of skeletal muscle revealed that obesity is associated with hypermethylation at CpG shores and exonic regions close to transcription start sites. Our results provide evidence that obesity and RYGB-induced weight loss have a dynamic effect on the epigenome.
    Cell Reports 04/2013; · 7.20 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
May 17, 2014