Article

Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study.

Institute of Biomedicine, Department of Biochemistry, University of Helsinki, Helsinki, Finland.
Journal of Neurochemistry (Impact Factor: 4.24). 12/2005; 95(3):609-17. DOI: 10.1111/j.1471-4159.2005.03376.x
Source: PubMed

ABSTRACT Progressive epilepsy with mental retardation, EPMR, belongs to a group of inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses. The CLN8 gene that underlies EPMR encodes a novel transmembrane protein that localizes to the endoplasmic reticulum (ER) and ER-Golgi intermediate compartment. Recently, CLN8 was linked to a large eukaryotic protein family of TLC (TRAM, Lag1, CLN8) domain homologues with postulated functions in lipid synthesis, transport or sensing. By using liquid chromatography/mass spectrometry we analysed molecular species of major phosholipid and simple sphingolipid classes from cerebral samples of two EPMR patients representing a progressive and advanced state of the disease. The progressive state brain showed reduced levels of ceramide, galactosyl- and lactosylceramide and sulfatide as well as a decrease in long fatty acyl chain containing molecular species within these classes. Among glycerophospholipid classes, an increase in species containing polyunsaturated acyl chains was detected especially in phosphatidylserines and phosphatidylethanolamines. By contrast, saturated and monounsaturated species were overrepresented among phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol classes in the advanced state sample. The observed changes in brain sphingo- and phospholipid molecular profiles may result in altered membrane stability, lipid peroxidation, vesicular trafficking or neurotransmission and thus may contribute to the progression of the molecular pathogenesis of EPMR.

0 Bookmarks
 · 
53 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the identification of a large number of disease-causing genes in recent years, it is still unclear what disease mechanisms operate in the neuronal ceroid lipofuscinoses (NCLs, Batten disease). As a group they are defined by the specific accumulation of protein, either subunit c of mitochondrial ATP synthase or SAPs A and D in lysosome-derived organelles, and regionally specific neurodegeneration. Evidence from biochemical and cell biology studies indicate related lesions in intracellular vesicle trafficking and lysosomal function. There is also extensive immunohistological evidence of a causative role of disease associated neuroinflammation. However the nature of these lesions is not clear nor is it clear why they lead to the defining pathology. Several different theories have proposed a range of potential mechanisms, but it remains to be determined which are central to pathogenesis, and whether there is a mechanism consistent across the group, or if it differs between disease forms. This review summarises the evidence that is currently available and the progress that has been made in understanding these profoundly disabling disorders.
    Biochimica et Biophysica Acta 05/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in remaining neurons. Neurons appear to die because of increased rates of apoptosis and altered autophagy. Ten genes have been identified so far that result in an NCL (CLN1-10). The most common forms are CLN1, CLN2, and CLN3, which were previously known as Infantile, Late-Infantile, and Juvenile NCL's, respectively. CLN1 and CLN2 result from mutations in soluble lysosomal enzymes palmitoyl-protein thioesterase (PPT) and tripeptidyl peptidase 1 (TPP1), which can be measured in white blood cells for clinical diagnosis. Molecular diagnostic testing is routinely available for CLN1, CLN2, and CLN3. Sequencing of other NCL genes may be required to establish a diagnosis when the common forms are ruled out. The pathogenesis of NCL neuronal loss resulting from loss of function of any of the NCL gene products remains unknown and no treatment options are presently available. © 2013 Wiley Periodicals, Inc. Dev Disabil Res Rev 2013;17:254-259.
    Developmental Disabilities Research Reviews 06/2013; 17(3):254-259. · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alterations of sphingolipid metabolism are implicated in the pathogenesis of many neurodegenerative disorders. We identified a homozygous non-synonymous mutation in CERS1, the gene encoding Ceramide Synthase, in four siblings affected by a progressive disorder with myoclonic epilepsy and dementia. CerS1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. We demonstrated that the mutation decreases C18-ceramides levels. In addition, we showed that downregulation of CerS1 in a neuroblastoma cell line triggers ER stress response and induces pro-apoptotic pathways. This study demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans. ANN NEUROL 2014. © 2014 American Neurological Association.
    Annals of Neurology 04/2014; · 11.91 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
Oct 13, 2014