Article

Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP.

University Laboratory of Physiology, Oxford University, Parks Road, Oxford OX1 3PT, UK.
Human Molecular Genetics (Impact Factor: 6.68). 10/2005; 14(18):2717-26. DOI: 10.1093/hmg/ddi305
Source: PubMed

ABSTRACT Recent studies have shown that heterozygous mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, cause permanent neonatal diabetes either alone (R201C, R201H) or in association with developmental delay, muscle weakness and epilepsy (V59G,V59M). Functional analysis in the absence of Mg2+, to isolate the inhibitory effects of ATP on Kir6.2, showed that both types of mutation reduce channel inhibition by ATP. However, in pancreatic beta-cells, K(ATP) channel activity is governed by the balance between ATP inhibition via Kir6.2 and Mg-nucleotide stimulation mediated by an auxiliary subunit, the sulphonylurea receptor SUR1. We therefore studied the MgATP sensitivity of KCNJ11 mutant K(ATP) channels expressed in Xenopus oocytes. In contrast to wild-type channels, Mg2+ dramatically reduced the ATP sensitivity of heterozygous R201C, R201H, V59M and V59G channels. This effect was predominantly mediated via the nucleotide-binding domains of SUR1 and resulted from an enhanced stimulatory action of MgATP. Our results therefore demonstrate that KCNJ11 mutations increase the current magnitude of heterozygous K(ATP) channels in two ways: by increasing MgATP activation and by decreasing ATP inhibition. They further show that the fraction of unblocked K(ATP) current at physiological MgATP concentrations correlates with the severity of the clinical phenotype.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.
    Nature Communications 08/2014; 5:4639. · 10.74 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single gene mutations that primarily affect pancreatic β-cell function account for approximately 1-2% of all cases of diabetes. Overlapping clinical features with common forms of diabetes makes diagnosis of monogenic diabetes challenging. A genetic diagnosis often leads to significant alterations in treatment, allows better prediction of disease prognosis and progression, and has implications for family members. Currently, genetic testing for monogenic diabetes relies on selection of appropriate individual genes for analysis based on the availability of often-limited phenotypic information, decreasing the likelihood of making a genetic diagnosis. We thus developed a targeted next-generation sequencing (NGS) assay for the detection of mutations in 36 genes known to cause monogenic forms of diabetes, including transient or permanent neonatal diabetes mellitus (TNDM or PNDM), maturity-onset diabetes of the young (MODY) and rare syndromic forms of diabetes. A total of 95 patient samples were analyzed: 19 with known causal mutations and 76 with a clinically suggestive phenotype but lacking a genetic diagnosis. All previously identified mutations were detected, validating our assay. Pathogenic sequence changes were identified in 19 out of 76 (25%) patients: 7 of 32 (22%) NDM cases, and 12 of 44 (27%) MODY cases. In 2 NDM patients the causal mutation was not expected as consanguinity was not reported and there were no clinical features aside from diabetes. A 3 year old patient with NDM at 3 months of age who previously tested negative for INS, KCNJ11 and ABCC8 mutations was found to carry a novel homozygous mutation in EIF2AK3 (associated with Wolcott-Rallison syndrome), a gene not previously suspected because consanguinity, delayed growth, abnormal bone development and hepatic complications had not been reported. Similarly, another infant without a history of consanguinity was found to have a homozygous GCK mutation causing PNDM at birth. This study demonstrates the effectiveness of multi-gene panel analysis in uncovering molecular diagnoses in patients with monogenic forms of diabetes.
    Molecular Genetics and Metabolism 09/2014; · 2.83 Impact Factor

Full-text

Download
40 Downloads
Available from
Jun 4, 2014