Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole.

Centre of Drug Controlled Release Research, National Research Institute for Family Planning, Da Hui Si Haidian District, Beijing, PR China.
Drug Development and Industrial Pharmacy (Impact Factor: 1.54). 06/2005; 31(4-5):375-83. DOI: 10.1081/DDC-54315
Source: PubMed

ABSTRACT Clotrimazole, which is an imidazole derivative antifungal agent, was widely used for the treatment of mycotic infections of the genitourinary tract. To develop alternative formulation for the vaginal administration of clotrimazole to provide sustained and controlled release of appropriate drug for local vaginal therapy, liposomes/niosomes were evaluated as delivery vehicles. To optimize the preparation of liposomes/niosomes with regard to size and entrapment efficiency, multilamellar liposomes/niosomes containing drug were prepared by lipid hydration method. The prepared liposomes/niosomes were incorporated into 2% carbopol gel, and the systems were evaluated for drug stability in phosphate-buffered saline (pH 7.4) and simulated vaginal fluid at 37 +/- 1 degrees C. Further, the vesicle gel system was evaluated by antifungal activity and tolerability on tissue level in rat.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Deformable propylene glycol-containing liposomes (DPGLs) incorporating metronidazole or clotrimazole were prepared and evaluated as an efficient drug delivery system to improve the treatment of vaginal microbial infections. The liposome formulations were optimized based on sufficient trapping efficiencies for both drugs and membrane elasticity as a prerequisite for successful permeability and therapy. An appropriate viscosity for vaginal administration was achieved by incorporating the liposomes into Carbopol hydrogel. DPGLs were able to penetrate through the hydrogel network more rapidly than conventional liposomes. In vitro studies of drug release from the liposomal hydrogel under conditions simulating human treatment confirmed sustained and diffusion-based drug release. Characterization of the rheological and textural properties of the DPGL-containing liposomal hydrogels demonstrated that the incorporation of DPGLs alone had no significant influence on mechanical properties of hydrogels compared to controls. These results support the great potential of DPGL-in-hydrogel as an efficient delivery system for the controlled and sustained release of antimicrobial drugs in the vagina.
    Journal of Liposome Research 08/2013; · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amphotericin B (AmB) is among the gold standard antifungal agents used for the treatment of the wide range of fungal infections. However, the drug has various side- effects. Transdermal approach for the delivery of drug is one of the accepted and convenient modes of drug delivery.
    Indian journal of dermatology. 07/2014; 59(4):369-74.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanopharmaceuticals have the potential to revolutionise medical treatment by permitting the design of more potent, less toxic "smart" therapeutics, ultimately leading to personalised medicine. This review summarises the challenges and potential uses of nanodelivery system for the topical drug therapy of vaginal diseases. The vaginal route of drug administration remains a challenge in the development of novel drug therapies, including nanomedicines. We attempted to provide an unbiased overview of currently investigated nanodelivery systems, some of which remain to be extensively studied under laboratory conditions, and some of which are already in clinical trials. Most nanodelivery systems are aimed at improving the treatment of vaginal infections, including HIV prevention. Promising new approaches in nanopharmaceutical design are discussed in this review, as well as the controversies related to mucoadhesiveness of nanopharmaceuticals.
    European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences 05/2013; · 2.61 Impact Factor

Similar Publications