Antiretroviral drug studies in nonhuman primates: A valid animal model for innovative drug efficacy and pathogenesis experiments

California National Primate Research Center, University of California, Davis, CA 95616, USA.
AIDS reviews (Impact Factor: 3.79). 04/2005; 7(2):67-83.
Source: PubMed


Several nonhuman primate models are used in HIV and AIDS research. In contrast to HIV-1 infection of chimpanzees, infection of macaque species with simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that shares many similarities with HIV infection and AIDS in humans. Although each animal model has its limitations and can never completely mimic HIV infection of humans, a carefully designed study allows experimental approaches, such as the control of certain variables, that are not feasible in humans, but that are often the most direct way to gain better insights in disease pathogenesis and provide proof-of-concept for novel intervention strategies. In the early days of the HIV pandemic, nonhuman primate models played a relatively minor role in the anti-HIV drug development process. During the past decade, however, the development of better virologic and immunologic assays, a better understanding of disease pathogenesis, and the availability of better drugs have made these animal models more practical for drug studies. In particular, nonhuman primate models have played an important role in demonstrating: (i) preclinical efficacy of novel drugs such as tenofovir; (ii) the benefits of chemoprophylaxis, early treatment and immunotherapeutic strategies; (iii) the virulence and clinical significance of drug-resistant viral mutants; and (iv) the role of antiviral immune responses during drug therapy. Comparison of results obtained in primate models with those observed in human studies will lead to further validation and improvement of these animal models. Accordingly, well-designed drug studies in nonhuman primates can continue to provide a solid scientific basis to advance our scientific knowledge and to guide future clinical trials.

20 Reads
  • Source
    • "This observation suggests that any role of Mamu-A*01-dependent antiviral immune responses in attempting to control viremia was transiently unmasked or rescued by the concomitant tenofovir treatment. These findings are consistent with previous observations (including from studies that used CD8+ cell depletion) that demonstrated that the early virologic response to tenofovir and other drugs in SIV and env-SHIV-infected macaques is highly dependent on the strength of antiviral immune responses [20,22,42,43]. Evidence from human trials also suggests a role of the immune system in determining the efficacy of drug treatment, as lower baseline viral RNA levels, a better status of the immune system, and certain MHC class II genotypes are predictive of a faster and/or more sustained response to HAART [44-49]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later. The early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia. This is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses.
    Retrovirology 02/2007; 4(1):25. DOI:10.1186/1742-4690-4-25 · 4.19 Impact Factor
  • Source
    • "Simian immunodeficiency virus (SIV) infection of macaques has proven useful for modeling HIV disease pathogenesis and intervention strategies [1-3]. While infection of macaques with most SIV isolates results eventually in an AIDS-like disease, there are also attenuated isolates and clones. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of macaques with the avirulent molecular clone SIVmac1A11 results in transient low viremia and no disease. To investigate if this low viremia is solely due to intrinsic poor replication fitness or is mediated by efficient immune-mediated control, 5 macaques were inoculated intravenously with SIVmac1A11. Three animals that were depleted of CD8+ cells at the start of infection had more prolonged viremia with peak virus levels 1 to 2 logs higher than those of 2 animals that received a non-depleting control antibody. Thus, CD8+ cell-mediated immune responses play an important role in controlling SIVmac1A11 replication during acute viremia.
    Virology Journal 02/2006; 3(1):22. DOI:10.1186/1743-422X-3-22 · 2.18 Impact Factor
  • Source
    • "In this respect, animal studies using SIV infection of non-human primates provide a useful tool to shed light on the mechanisms of immune-mediated control of infection, the impact of antiretroviral drugs on virus replication [12], and the emergence and evolution of drug-resistant variants [13]. SIV infection in rhesus macaques shares many of the immunopathogenic features of HIV-1 infection in humans, and this model has been used to evaluate the contribution of antiviral immune responses to suppression of virus replication during ART intervention. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Emergence of drug-resistant strains of human immunodeficiency virus type 1 (HIV-1) is a major obstacle to successful antiretroviral therapy (ART) in HIV-infected patients. Whether antiviral immunity can augment ART by suppressing replication of drug-resistant HIV-1 in humans is not well understood, but can be explored in non-human primates infected with simian immunodeficiency virus (SIV). Rhesus macaques infected with live, attenuated SIV develop robust SIV-specific immune responses but remain viremic, often at low levels, for periods of months to years, thus providing a model in which to evaluate the contribution of antiviral immunity to drug efficacy. To investigate the extent to which SIV-specific immune responses augment suppression of drug-resistant SIV, rhesus macaques infected with live, attenuated SIVmac239Deltanef were treated with the reverse transcriptase (RT) inhibitor tenofovir, and then challenged with pathogenic SIVmac055, which has a five-fold reduced sensitivity to tenofovir. Replication of SIVmac055 was detected in untreated macaques infected with SIVmac239Deltanef, and in tenofovir-treated, naïve control macaques. The majority of macaques infected with SIVmac055 experienced high levels of plasma viremia, rapid CD4+ T cell loss and clinical disease progression. By comparison, macaques infected with SIVmac239Deltanef and treated with tenofovir showed no evidence of replicating SIVmac055 in plasma using allele-specific real-time PCR assays with a limit of sensitivity of 50 SIV RNA copies/ml plasma. These animals remained clinically healthy with stable CD4+ T cell counts during three years of follow-up. Both the tenofovir-treated and untreated macaques infected with SIVmac239Deltanef had antibody responses to SIV gp130 and p27 antigens and SIV-specific CD8+ T cell responses prior to SIVmac055 challenge, but only those animals receiving concurrent treatment with tenofovir resisted infection with SIVmac055. These results support the concept that anti-viral immunity acts synergistically with ART to augment drug efficacy by suppressing replication of viral variants with reduced drug sensitivity. Treatment strategies that seek to combine immunotherapeutic intervention as an adjunct to antiretroviral drugs may therefore confer added benefit by controlling replication of HIV-1, and reducing the likelihood of treatment failure due to the emergence of drug-resistant virus, thereby preserving treatment options.
    Retrovirology 02/2006; 3(1):97. DOI:10.1186/1742-4690-3-97 · 4.19 Impact Factor
Show more

Similar Publications


20 Reads
Available from