Article

Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome.

Department of Cardiovascular Surgery, St. Vincent Mercy Medical Center, Toledo, OH, USA.
Critical Care Medicine (Impact Factor: 6.15). 08/2005; 33(8):1749-56. DOI: 10.1097/01.CCM.0000171531.06133.B0
Source: PubMed

ABSTRACT Acute renal injury and failure (ARF) after cardiopulmonary bypass (CPB) has been linked to low on-pump hematocrit (hematocrit). We aimed to 1) elucidate if and how this relation is modulated by the duration of CPB (TCPB) and on-pump packed red blood cell transfusions and 2) to quantify the impact of post-CPB renal injury on operational outcome and resource utilization.
Retrospective review.
A Northwest Ohio community hospital.
Adult coronary artery bypass surgery patients with CPB but no preoperative renal failure.
None.
We quantified post-CPB renal injury via 1) the peak postoperative change in serum creatinine (Cr) level relative to pre-CPB values (%DeltaCr) and 2) ARF, defined as the coincidence of post-CPB Cr > or =2.1 mg/dL and >2 times pre-CPB Cr. The separate effects of lowest hematocrit, intraoperative packed RBC transfusions, and TCPB on %DeltaCr and ARF were derived via multivariate regression, overlapping quintile subgroup analyses, and propensity matching. Lowest hematocrit (22.0% +/- 4.6% sd), TCPB (94 +/- 35 mins), and pre-CPB Cr (1.01 +/- 0.23 mg/dL) varied widely. %DeltaCr varied substantially (24 +/- 57%), and ARF was documented in 89 patients (5.1%). Both %DeltaCr (p < .001) and ARF (p < .001) exhibited sigmoidal dose-dependent associations to lowest hematocrit that were 1) modulated by TCPB such that the renal injury was exacerbated as TCPB increased, 2) worse in patients with relatively elevated pre-CPB Cr (> or =1.2 mg/dL), and 3) worse with intraoperative packed red blood cell transfusions (n = 385; 21.9%), in comparison with patients at similar lowest hematocrit. Operative mortality (p < .01) and hospital stays (p < .001) were increased systematically and significantly as a function of increased post-CPB renal injury.
CPB hemodilution to hematocrit <24% is associated with a systematically increased likelihood of renal injury (including ARF) and consequently worse operative outcomes. This effect is exacerbated when CPB is prolonged with intraoperative packed red blood cell transfusions and in patients with borderline renal function. Our data add to the concerns regarding the safety of currently accepted CPB practice guidelines.

0 Followers
 · 
139 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whether a restrictive threshold for hemoglobin level in red-cell transfusions, as compared with a liberal threshold, reduces postoperative morbidity and health care costs after cardiac surgery is uncertain. We conducted a multicenter, parallel-group trial in which patients older than 16 years of age who were undergoing nonemergency cardiac surgery were recruited from 17 centers in the United Kingdom. Patients with a postoperative hemoglobin level of less than 9 g per deciliter were randomly assigned to a restrictive transfusion threshold (hemoglobin level <7.5 g per deciliter) or a liberal transfusion threshold (hemoglobin level <9 g per deciliter). The primary outcome was a serious infection (sepsis or wound infection) or an ischemic event (permanent stroke [confirmation on brain imaging and deficit in motor, sensory, or coordination functions], myocardial infarction, infarction of the gut, or acute kidney injury) within 3 months after randomization. Health care costs, excluding the index surgery, were estimated from the day of surgery to 3 months after surgery. A total of 2007 patients underwent randomization; 4 participants withdrew, leaving 1000 in the restrictive-threshold group and 1003 in the liberal-threshold group. Transfusion rates after randomization were 53.4% and 92.2% in the two groups, respectively. The primary outcome occurred in 35.1% of the patients in the restrictive-threshold group and 33.0% of the patients in the liberal-threshold group (odds ratio, 1.11; 95% confidence interval [CI], 0.91 to 1.34; P=0.30); there was no indication of heterogeneity according to subgroup. There were more deaths in the restrictive-threshold group than in the liberal-threshold group (4.2% vs. 2.6%; hazard ratio, 1.64; 95% CI, 1.00 to 2.67; P=0.045). Serious postoperative complications, excluding primary-outcome events, occurred in 35.7% of participants in the restrictive-threshold group and 34.2% of participants in the liberal-threshold group. Total costs did not differ significantly between the groups. A restrictive transfusion threshold after cardiac surgery was not superior to a liberal threshold with respect to morbidity or health care costs. (Funded by the National Institute for Health Research Health Technology Assessment program; Current Controlled Trials number, ISRCTN70923932.).
    New England Journal of Medicine 03/2015; 372(11):997-1008. DOI:10.1056/NEJMoa1403612 · 54.42 Impact Factor
  • Journal of Cardiothoracic and Vascular Anesthesia 08/2014; 28(4):e35-e36. DOI:10.1053/j.jvca.2013.12.020 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT: Red blood cell (RBC) transfusion is a common intervention in intensive care unit (ICU) patients. Anemia is frequent in this population and is associated with poor outcomes, especially in patients with ischemic heart disease. Although blood transfusions are generally given to improve tissue oxygenation, they do not systematically increase oxygen consumption and effects on oxygen delivery are not always very impressive. Blood transfusion may be lifesaving in some circumstances, but many studies have reported increased morbidity and mortality in transfused patients. This review focuses on some important aspects of RBC transfusion in the ICU, including physiologic considerations, a brief description of serious infectious and noninfectious hazards of transfusion, and the effects of RBC storage lesions. Emphasis is placed on the importance of personalizing blood transfusion according to physiological endpoints rather than arbitrary thresholds.
    10/2011; 1:43. DOI:10.1186/2110-5820-1-43