Analysis of mutations in B-RAF, N-RAS, and H-RAS genes in the differential diagnosis of Spitz nevus and spitzoid melanoma.

Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
American Journal of Surgical Pathology (Impact Factor: 4.59). 10/2005; 29(9):1145-51. DOI: 10.1097/01.pas.0000157749.18591.9e
Source: PubMed

ABSTRACT A definite diagnosis cannot be established based on histologic features alone in a large number of Spitz nevi and spitzoid melanomas. In a vast majority of common benign and malignant melanocytic lesions, B-RAF and N-RAS mutations were described, but these were not detected in Spitz nevi. In contrast, H-RAS mutations were frequently encountered in Spitz nevi, but only rarely in melanomas. To date, B-RAF mutation analysis has not been reported in atypical Spitz nevi, and there are only a few reports of it in spitzoid melanomas. We analyzed 96 formalin-fixed, paraffin-embedded spitzoid melanocytic lesions for hotspot mutations in B-RAF, N-RAS, and H-RAS genes to test the assumption whether mutation analysis would assist a more accurate diagnosis of spitzoid melanocytic lesions, which are notoriously difficult to classify. B-RAF or N-RAS mutations were observed in 31 of 36 (86%) spitzoid melanomas, and in 6 of 7 (86%) spitzoid melanoma metastases. In contrast, none of the 14 Spitz nevi and none of the 16 atypical Spitz nevi had mutations in any of the three genes. A B-RAF or N-RAS mutation was found in 8 of 23 (35%) spitzoid lesions suspected for melanoma. H-RAS mutations were detected in 4 of 14 (29%) Spitz nevi, in 3 of 22 (14%) atypical Spitz nevi, in 1 of 15 (7%) spitzoid tumors suspected for melanoma, but in none of the spitzoid melanomas. These results strongly indicate that Spitz nevi and spitzoid melanomas are genetically unrelated entities. Furthermore, we can conclude that mutation analysis may be useful as an additional diagnostic tool to distinguish between benign and malignant spitzoid lesions.


Marcory van Dijk