Article

PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly.

Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Hôpital de la Pitié Salpêtrière, Paris, France.
FEBS Journal (Impact Factor: 3.99). 09/2005; 272(16):4023-33.
Source: PubMed

ABSTRACT Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present paper, Quasi Elastic Incoherent Neutron Scattering (QENS) results, gathered at different energy resolution values at the ISIS Facility (RAL, UK), on α-synuclein in soluble and fibrillar forms as a function of temperature and exchanged wave-vector Q are shown. The measurements reveal a different dynamic behavior of soluble and fibrillar α-synuclein as a function of thermal stress. In more detail, the dynamics of each protein form reflects its own complex conformational heterogeneity. Furthermore, the effect of a well known bioprotectant, trehalose, that influences α-synuclein fibrillation, on both soluble and fibrillar α-synuclein is discussed.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellular hallmarks of Parkinson's disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes in the enteric nervous system and spreads to the brain, suggesting an active retrograde transport of α-synuclein (the key protein component in Lewy bodies), via the vagal nerve. This hypothesis, however, has not been tested experimentally thus far. Here, we use a human PD brain lysate containing different forms of α-synuclein (monomeric, oligomeric and fibrillar), and recombinant α-synuclein in an in vivo animal model to test this hypothesis. We demonstrate that α-synuclein present in the human PD brain lysate and distinct recombinant α-synuclein forms are transported via the vagal nerve and reach the dorsal motor nucleus of the vagus in the brainstem in a time-dependent manner after injection into the intestinal wall. Using live cell imaging in a differentiated neuroblastoma cell line, we determine that both slow and fast components of axonal transport are involved in the transport of aggregated α-synuclein. In conclusion, we here provide the first experimental evidence that different α-synuclein forms can propagate from the gut to the brain, and that microtubule-associated transport is involved in the translocation of aggregated α-synuclein in neurons.
    Acta Neuropathologica 10/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. The neuropathology is characterized by intraneuronal protein aggregates of α-synuclein and progressive degeneration of substantia nigra dopaminergic neurons. Previous studies have shown that extracellular α-synuclein aggregates can activate microglial cells, induce inflammation and contribute to the neurodegenerative process in PD. However, the signaling pathways involved in α-synuclein-mediated microglia activation are poorly understood. Galectin-3 is a member of a carbohydrate-binding protein family involved in cell activation and inflammation. Therefore, we investigated whether galectin-3 is involved in the microglia activation triggered by α-synuclein.
    Acta neuropathologica communications. 11/2014; 2(1):156.

Preview

Download
1 Download